• Title/Summary/Keyword: motor speed controller

Search Result 1,299, Processing Time 0.041 seconds

A Study on the Robust Speed Controller of Induction Motor (유도전동기의 강인 속도 제어기에 관한 연구)

  • Byun, Hwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.612-615
    • /
    • 1997
  • In this paper, a robust speed controller considering the effect of uncertainty (plant parameter variation. external load disturbance. unmodeled and nonlinear dynamics etc..) for induction motor is proposed. Firstly. the dynamic model at nominal case of induction motor is estimated. Based on the estimated model. the IPSC ( Integral - Proportional Speed Controller) is designed. Then a DTRC (Dead-time Robust Controller) combining DTC ( Dead-time Compensator) & SRC (Simple Robust Controller) is designed to reduce the effects of parameter variation and external disturbance. Some simulated results are provided to demonstrate the effectiveness of the proposed controller.

  • PDF

Fuzzy Speed Regulator based on a Fuzzy Acceleration Observer for Vector Control of Permanent Magnet Synchronous Motors (영구자석 동기전동기의 벡터 제어를 위한 퍼지 각가속도 관측기 기반의 퍼지 속도제어기)

  • Jung, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.330-337
    • /
    • 2011
  • This paper presents a new fuzzy speed controller based on a fuzzy angular acceleration observer to realize a robust speed control of permanent magnet synchronous motors(PMSM). The proposed speed controller needs the information of the angular acceleration, thus the first-order fuzzy acceleration observer is designed. The LMI existence condition is given for the proposed fuzzy speed controller, and the gain matrices of the controller are calculated. It is verified that the augmented control system consisting of the fuzzy speed controller and the fuzzy acceleration observer is mathematically stable. To validate the effectiveness of the proposed acceleration observer-based fuzzy speed controller, the simulation and experimental results are shown under motor parameter variations. It is definitely proven that the proposed control scheme can precisely track the speed of a permanent magnet synchronous motor.

Load variation Compensated Neural Network Speed Controller for Induction Motor Drives (부하변동을 보상한 유도전동기 신경망 속도 제어기)

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Hee-Jun;Hyun, Sin-Tae;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1137-1139
    • /
    • 2002
  • In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.

  • PDF

Load Variation Compensated Neural Network Speed Controller for Induction Motor Drives

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Young-Tae;Kim, Hee-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.97-102
    • /
    • 2003
  • In this paper, a recurrent artificial neural network (RNN) based self-tuning speed controller is proposed for the high-performance drives of induction motors. The RNN provides a nonlinear modeling of a motor drive system and could provide the controller with information regarding the load variation system noise, and parameter variation of the induction motor through the on-line estimated weights of the corresponding RNN. Thus, the proposed self-tuning controller can change the gains of the controller according to system conditions. The gain is composed with the weights of the RNN. For the on-line estimation of the RNN weights, an extended Kalman filter (EKF) algorithm is used. A self-tuning controller is designed that is adequate for the speed control of the induction motor The availability of the proposed controller is verified through MATLAB simulations and is compared with the conventional PI controller.

Adaptive Fuzzy Speed Controller Design for DC Servo Motor (직류 서보 전동기를 대상으로한 적응퍼지속도제어기의 설계)

  • Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.994-997
    • /
    • 2003
  • This Paper presents a study of the performance of a DC servo motor with a model reference adaptive fuzzy speed controller (MRAFSC) in the presences of load disturbances. MRAFSC comprised inner feedback loop consisting of the fuzzy logic controller (FLC) and plant, and outer loop consisting of an adaptation mechanism which is designed for tuning a control rule of the FLC. Experimental results show the good performance in the DC servo motor system with the proposed adaptive fuzzy controller.

  • PDF

Hybrid Fuzzy Controller for DTC of Induction Motor Drive (유도전동기 드라이브의 DTC를 위한 하이브리드 퍼지제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.5
    • /
    • pp.22-33
    • /
    • 2011
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjection with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid fuzzy controller for direct torque control(DTC) of induction motor drives. The speed controller is based on adaptive fuzzy learning controller(AFLC), which provide high dynamics performances both in transient and steady state response. Flux position, error in flux magnitude and error in torque are used as FLC state variables. The speed is estimated with model reference adaptive system(MRAS) based on artificial neural network(ANN) trained on-line by a back-propagation algorithm. This paper is controlled speed using hybrid fuzzy controller(HFC) and estimation of speed using ANN. The performance of the proposed induction motor drive with HFC controller and ANN is verified by analysis results at various operation conditions.

Estimation and Control of Speed of Induction Motor using Fuzzy-ANN Controller (퍼지-ANN 제어기를 이용한 유도전동기의 속도 추정 및 제어)

  • 이홍균;이정철;김종관;정동화
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.545-550
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled induction motor drive system. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed estimation and control of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

Development of the linear motor driver with high speed and stiffness based on SERCOS (SERCOS 기반의 고속 고강성 이송시스템 드라이버 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.64-68
    • /
    • 1997
  • In this paper, a controller for the linear motor with high speed and stiffness is implemented using SERCOS interface which is a real time communication protocol between the numerical controller(NC) and the motor driver. The proposed controller is mainly composed of current, speed, and position controller, which are designed using the 32-bit DSP(TMS320C31), a high-integrated logic device (EPM7128), and Intelligent Power Module(IPM) to enhance reliability and compactness of the system. The experimental results show the effective performance of the proposed controller for he linear motor with high speed and stiffness.

  • PDF

Fuzzy Logic Speed Control of a Surface-Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기전동기의 퍼지 속도제어)

  • Jung, Jin-Woo;Choi, Young-Sik;Yu, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.184-192
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller to precisely regulate the speed of a surface-mounted permanent magnet synchronous motor(SPMSM). The proposed fuzzy controller needs the knowledge of the load torque to realize its robust and accurate control, thus the first-order load torque observer is adopted to estimate it. It is analytically confirmed that the overall control system containing the fuzzy speed controller and the load torque observer is exponentially stable. To prove the validity of the proposed fuzzy speed controller, the simulation and experimental results are shown. It is concluded that the proposed control scheme can be employed to accurately control the speed of a SPMSM motor.

Sensorless Speed Control of Permanent Magnet AC Motor using Fuzzy Logic Controller (퍼지 제어기를 이용한 영구 자석 교류 전동기의 센서리스 속도 제어)

  • Choi, Sung-Dae;Ko, Bong-Woon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.524-527
    • /
    • 2003
  • This paper proposes speed control system using a Fuzzy Logic Controller(FLC) in order to realize the speed control of Permanent Magnet AC Motor with no sensor. FLC based MRAS(Model Reference Adaptive System) estimates the speed of Permanent Magnet AC Motor. Using the estimated speed, speed control is performed. The experiment is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF