• Title/Summary/Keyword: motor speed controller

Search Result 1,299, Processing Time 0.028 seconds

A Speed Control for the Reduction of the Shift Shocks in Electric Vehicles with a Two-Speed AMT

  • Kim, Young-Ki;Kim, Hag-Wone;Lee, In-Seok;Park, Sung-Min;Mok, Hyung-Soo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1355-1366
    • /
    • 2016
  • In the present paper, a speed control algorithm with fast response characteristics is proposed to reduce the shift shock of medium/large-sized electric vehicles equipped with a two-speed AMT. Shift shocks, which are closely related with to the vehicles' ride comfort, occur due to the difference between the speed of the motor shaft and the load shaft when the gear is engaged. The proposed speed control method for shift shock reduction can quickly synchronize speeds occurring due to differences in the gear ratios during speed shifts in AMT systems by speed command feed-forward compensation and a state feedback controller. As a result, efficient shift results without any shift shock can be obtained. The proposed speed control method was applied to a 9 m- long medium- sized electric bus to demonstrate the validity through a simulated analysis and experiments.

Maximum Torque Control of SynRM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.47-57
    • /
    • 2006
  • The paper is proposed maximum torque control of SynRM drive using adaptive teaming mechanism-fuzzy neural network(ALM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $^i{_d}$ for maximum torque operation is derived. The proposed control algorithm is applied to SynRM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the ALM-FNN and ANN controller.

Design of a Fuzzy Logic Controller Using an Adaptive Evolutionary Algorithm for DC Series Motors (적응진화 알고리즘을 사용한 DC 모터 퍼지 제어기 설계에 관한 연구)

  • Kim, Dong-Wan;Hwang, Gi-Hyun;Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1019-1028
    • /
    • 2007
  • In this paper, adaptive evolutionary algorithm(AEA) is proposed, which uses both genetic algorithm(GA) with good global search capability and evolution strategy(ES) with good local search capability in an adaptive manner, when population evolves to the next generation. In the reproduction procedure, proportion of the population for GA and ES is adaptively determined according to their fitness. The AEA is used to design membership functions and scaling factors of the fuzzy logic controller(FLC). To evaluate the performance of the proposed FLC design method, we make an experiment on the FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than PD controller.

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

The Stability Improvement of Brushless DC Motor by Digital PI Control (디지털 PI제어에 의한 브러시리스 직류모터의 안정도 향상)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Im, Tae-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 2000
  • This study have established proper mathematical equivalent model of Brushless DC (BLDC) motor and estimated the motor parameter by means of the back-emf measurement as being the step input to the controlled target BLDC motor. And the validity of proposed estimation method is confirmed by the test result of step response. As well, we have designed the reasonable digital controller as a consequence of the root locus method which is obtained from the open-loop transfer function of BLDC motor with hall sensor, and the determination of control gain for variable speed control. Here, revised Ziegler-Nichols tuning method is applied for the proper digital gain establishment, and the system stability is verified by the frequency domain analysis with Bode-plot and experimentation.

  • PDF

Rotor Resistance Estimation Using Slip Angular Velocity In Vector-Controlled Induction Motor (벡터제어 유도전동기의 슬립 각속도를 이용한 회전자 저항 추정)

  • Park, Hyunsu;Jo, Gwon-Jae;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1308-1316
    • /
    • 2018
  • Accurate tuning of parameter is very important in vector-controlled induction motor. Among the parameters of induction motor, detuning of rotor resistance used in controller design deteriorates drive performance. This paper presents a novel rotor resistance estimation strategy using slip angular velocity in vector-controlled induction motor drives. The slip angular velocity can be calculated by two methods. Firstly, it can be induced from the rotor voltage equation. Secondly, it can be induced from the difference between synchronous angular velocity and rotor angular velocity. The first method includes the rotor resistance, while the second method dose not include this parameter. From this fact, the rotor resistance can be identified by comparing the slip angular velocities in the two methods. In the tuned states of the rotor resistance, performances of flux estimator and speed drive are discussed. The simulation and experimental results are given to verify the validity of the proposed method in various situations.

A Study On Parameter Compensation Scheme in Vector Controlled Induction Motor Drive (벡터제어 유도전동기 구동의 파라메터 보상에 대한 연구)

  • Park, Min-Ho;Kim, Young-Real;Won, Chung-Yuen;Kim, Tae-Hoon;Kim, Yuen-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.20-24
    • /
    • 1989
  • The time optimal position control scheme can be repeatedly taken from the initial state of a dynamic system to a desired one as fast as possible at the industrial drives. In this case, the machine parameters will vary due to temperature, frequency, and saturation effects. In particular, the rotor resistance value changes dramatically with temperature and frequency. These changes affect the command values of the stator current components and slip speed. There is a mismatch between the commanded variables and actual variables of the induction motor drive, and this situation leads to decoupling of the vector controller from the plant, i.e the induction motor. Consequences of such decoupling include the initiation of oscillations of the rotor flux and unsuitable switching of electromagnetic torque of the induction motor servo drive. Therefore, a rotor resistance parameter compensating method for the induction motor is described.

  • PDF

DIGITAL SPEED CONTROLLER OF DC MOTOR USING THE SLIDING MODE (슬라이딩 모드를 이용한 직류 전동기의 디지탈 속도 제어기)

  • 이성백;원영진;권오서
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1991.10a
    • /
    • pp.69-74
    • /
    • 1991
  • 본 논문은 슬라이딩 모드 제어 기법을 이용한 직류 전동기의 디지탈 속도 제어기에 관한 연구이다. 또한 연속 시스템에 적용하던 슬라이딩 모드 제어기법을 이산 시스템에 사용할 수 있도록 해석하고, 실험하였다. 슬라이딩 모드 제어기에서 발생되는 채터링(CHATTERING) 현상을 감소시키기 위해 스위칭 주파수를 높이고, 샘플링 주기를 최대한 줄였으며 제어기 출력에 필터를 도입하였다. 또한, 스위칭 지연과 외란에 대한 보상도 고려하였으며 슬라이딩 모드 제어기를 마이크로 프로세서로 구성하였다. 전력 소비를 줄이기 위해 LIMITED UNIPOLAR 모드에서 직류 전동기를 구동하였다.

  • PDF

Analysis and Compensation of PWM-VSI Non-linearity Output Characteristics (PWM-VSI 비선형 출력특성에 대한 해석 및 보상 방법)

  • 이정표;김준형;박철현;김호근;엄주경;최경수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.443-447
    • /
    • 1999
  • The AC drive systems of a voltage source inverter and an induction motor. The inverter non linearity caused by the turn on/off time dependency of the current level in the switching IGBT is described in the first part of this paper. To improve the low-speed drive characteristics, accurate applied voltage calculation is proposed under considerations of the compensations for the quantization error in the digital controller, the forward voltage drop of switching drives and the dead time of the inverter. The experimental studies show the improved drive characteristics.

  • PDF

Remote Fuzzy Logic Control of Networked Control system in Profibus-DP

  • Lee, Kyung-Chang;Lee, Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.133.2-133
    • /
    • 2001
  • This paper focuses on the feasibility of fuzzy logic control for networked control systems. In order to evaluate its feasibility, a networked control system for motor speed control is implemented on a Profibus-DP network. The NCS consists of several independent, but interacting processes running on two separate stations. By using this NCS, the network delay is analyzed to find the cause of the delay. Furthermore, in order to prove the feasibility, the fuzzy logic controllers performance is compared with those of conventional PID controllers. Based on the experimental results, the fuzzy logic controller can be a viable choice for NCS due to its robustness against parameter uncertainty.

  • PDF