• 제목/요약/키워드: motor drive valve

검색결과 32건 처리시간 0.022초

직동식 공압서보밸브의 Force Motor 설계 및 성능시험 (Design and Performance Test of the Force Motor for Direct Drive-type Pneumatic Servo Valve)

  • 이원희;김동수;박상운
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.836-839
    • /
    • 2003
  • A pneumatic servo valve which is widely applied in industrial field. And It is consist of force motor, spool & sleeve and servo controller. In this study. we developed the force motor which is consume to low power for a pneumatic servo valve. We could reduce the number of turn of the solenoid by using ferromagnetic permanent magnet and took different direction of each other using one coil instead of two coil. we modeled a system consisting of various electro-mechanical subsystems. The appropriateness of the model was verified by simulation. The simulation model resolved the motion of spool, the winding current and the magnetic force. Also, we calculated the displacement and velocity of the spool, flux contour line, b vector. flux density. flux linkage, back EMF etc.

  • PDF

리니어 포스모터를 사용한 서보밸브의 모델링 및 특성해석 (Modelling and Characteristic Analysis of a Servo Valve using Linear Force Motor)

  • 허준영;김철재;박창순
    • 유공압시스템학회:학술대회논문집
    • /
    • 유공압시스템학회 2010년도 춘계학술대회
    • /
    • pp.1-6
    • /
    • 2010
  • Direct Drive Valves (DDV) with electric closed loop spool position control are suitable for electrohydraulic position, velocity, pressure or force control systems including those with high dynamic response requirements. The spool drive device is a permanent magnet linear force motor which can actively stroke the spool from its spring centered position in both directions. This basic study is carried out to drive the design parameters for developing a domestic DDV. The static and dynamic characteristics of DDV are examined. The simulation results are compared with data of manufacture's catalog to show the validity of the modelling.

  • PDF

직접구동형 서보밸브의 제어기 설계에 관한 연구 (Study for the Controller Design of a Direct Drive Servo Valve)

  • 이성래;김종열;김치붕
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.136-136
    • /
    • 2000
  • The direct drive servo valve(DDV) is composed of a DC rotor, link, valve spool and displacement sensor(LVDT) where the spool is directly coupled to the DC motor through the link. Since the DDV is a kind of one-stage valve, the robust controller is required to overcome the flow force effect on the spool motion. The mathematical equations are derived and the stability, accuracy and response speed of a DDV are investigated analytically using a linearized system block diagram. Proportional control, PID control. Time-Delay control, Sliding Mode control, and Proportional control using the load pressure are applied to DDV to find which one shows the best control performance. The digital computer simulation results show that the proportional control using the load pressure satisfies the design requirement of response speed and steady state error regardless of the variation of load pressure,

  • PDF

실험실용 자가제작 제어밸브의 성능 (Performance of a Home Made Control Valve for Lab Use)

  • 함태원;김영한
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.918-922
    • /
    • 2000
  • A lab-use home made control valve was made of easily obtainable materials and its performance was examined through a fluid flow experiment. By modifying the hole of a commercial valve a linearly adjustable valve for the flow control is made. The detail of valve assembling and modification is explained for the researchers who intend to employ a similar control valve.

  • PDF

다중채널 직접구동 엑츄에이터의 구동전류 동일화 루프 설계 (Current Equation Loop Design of Muti-channel Direct Drive Valve Actuation)

  • 남윤수
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.162-169
    • /
    • 2000
  • A Direct Drive Valve(DDV) hydraulic actuation system which is commonly used as an aircraft's control surface driving actuator has multi-loop control structure to ensure its safety operation. However, because of not perfect matching of one self channel characteristics with the others, the servo valve driving current of each channel can be widely different. Therefore, the long-time use of DDV actuator without any correction of these channel current offsets will cause the problem of performance or life expectancy degradation due to unwanted heats in the linear motor. A current equalization loop structure which can minimizes current offsets between channels is introduced and designed. The performance of the current equalization loop is investigated and verified through the analytic and experimental ways.

  • PDF

해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계 (Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method)

  • 이성래;최현영;문의준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.507-514
    • /
    • 2001
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

  • PDF

컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계 (Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method)

  • 이성래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1590-1595
    • /
    • 2003
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

  • PDF

컴플렉스법에 의한 직접구동형서보밸브의 진상-지상 제어기 설계 (Lead-Lag Controller Design of Direct Drive Servo Valve Using Complex Method)

  • 이성래
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1719-1726
    • /
    • 2004
  • Direct drive servovalve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the DC motor. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the lead-lag controller is designed using the complex method that is one kind of constrained direct search method.

해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계 (Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method)

  • 이성래;최현영;문의준
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.754-763
    • /
    • 2002
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

근궤적과 수동 조정에 의한 직접 구동형 서보밸브의 PID 제어기 및 미분피드백 이득 설계 (PID Controller and Derivative-feedback Gain Design of the Direct-drive Servo Valve Using the Root Locus and Manual Tuning)

  • 이성래
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권3호
    • /
    • pp.15-23
    • /
    • 2016
  • The direct-drive servo valve(DDV) is a kind of one-stage valve because the main spool valve is directly driven by the dc motor. Since the DDV structure is simple, it is less expensive, more reliable, and offers a reduced internal leakage and a reduced sensitivity to fluid contamination. The control system of the DDV is highly nonlinear due to a current limiter, a voltage limiter, and the flow-force effect on the spool motion. The shape of the step response of the DDV-control system varies considerably according to the magnitudes of the step input and the load pressure. The system-design requirements mean that the overshoots should be less than 20%, and the errors at 0.02s should be less than 2%, regardless of the reference-step input sizes of 1V and 5V and the load-pressure magnitudes of 0MPa and 20.7MPa. To satisfy the system-design requirements, the PID-controller parameters of $K_c$, $T_i$ and $T_d$, and the derivative-feedback gain of $K_{der}$ are designed using the root locus and manual tuning.