• Title/Summary/Keyword: motor brake system

Search Result 104, Processing Time 0.02 seconds

Sound Quality Improvement of Electric Parking Brake System (EPB(Electric Parking Brake) 작동음질 개선에 관한 연구)

  • Park, Dong-Chul;Hong, Seok-Kwan;Jo, Ki-Chang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.461-466
    • /
    • 2012
  • Customers want to have more convenient and comfortable vehicle. Motor-on-caliper EPB(Electrical Parking Brake) System is one of the new systems for customer's convenience. It is applied for Midsize vehicle for reducing weight/price compared to cable puller type EPB. In this paper we studied sound quality improvement of motor-on-caliper EPB system. We developed the sound quality index and suggested the interior sound quality target value. To meet the target value cascading target was also suggested. EPB motor vibration level & sound radiation level, vibro-acoustic transfer function level from EPB to interior was defined. To find out effective way of sound quality improvement and find cascading target, TPA(Transfer Path Analysis) was carried out.

  • PDF

Implementation of Electro-Mechanical Brake(EMB) for Brake-By-Wire System of Electric Vehicle (전기 자동차용 Brake-By-Wire 시스템을 위한 전자식 브레이크 구현)

  • Ryu, Hye-Yeon;Jeong, Ki-Min;Kim, Man-Ho;Lee, Kyung-Chang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.313-323
    • /
    • 2017
  • As vehicles become more intelligent this is focused on ways to enhance safety and convenience for both drivers and passengers. In particular, x-by-wire systems that replace rigid mechanical components with dynamically configurable electronic elements are being developed to expand intelligent functions, such as adaptive cruise control or lane departure warning system. Because the malfunction of safety-related modules controlling critical functions, such as brakes, throttle, and steering in x-by-wire systems, can cause injury or death, safety and reliability are the most critical issue for automotive vendors and parts manufacturers. In an effort to develop better and effective brake-by-wire system, this paper presents EMB system by using the low speed electric vehicle, which is not required large braking force, with motor controller. In addition, we design performance evaluation system of EMB with 1/4 low speed electric vehicle model and suggested EMB is evaluated through the performance evaluation system.

Performance Analysis of Electronic Parking Brake (전자 제어식 주차브레이크(EPB)의 성능분석)

  • Kim, Sung-Mo;Jeong, Jong-Yeol;Shin, Chang-Woo;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.751-755
    • /
    • 2011
  • Electric Parking Brake(EPB) is the system operated by electric control actuator. It differs from the mechanical parking brake system which is operated by lever and pedal in need of human power. The EPB system is composed of DC motor, helical and differential epicyclic gear, screw, cables, and sensor. This paper describes about the EPB system mathematically and constructs a modeling of the EPB system using MATLAB/SIMULINK. Especially, SimMechanics library in SIMULINK is used to make each parts of system a module. By made modeling of the friction torque between bolt and nut. Cable tension can be maintained after the motor operating stops.

Dynamic Analysis on the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 제생 브레이크의 동특성 해석)

  • 이재구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.137-146
    • /
    • 2000
  • The hydraulic energy regnerative brake systems is introduced in this work. An accumulator stores kinetic energy during braking action, and the stored energy is used in a following acceleration action. The dynamic model of the brake system is derived for computer simulation study, and the Runge-Kutta numerical integration method is applied to the simulation work. Since the model contains several unknown parameters, these were determined by data which had been proceeded. Through a series of computer simulation , dynamic performance of the energy regenerative brake system is compared with that of a conventional system in which a conventional brake circuit is used. A series of test is carried out in the laboratory. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action.

  • PDF

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

The Development of Miniature Propelling System for Electric Brake at Extreme Low Speed (극 저속시 전기제동을 위한 축소 모형 추진시스템 개발)

  • Kim, Young-Choon;Cho, Moon-Taek;Joo, Hae-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.822-827
    • /
    • 2013
  • In this paper, how to stop a moment to experiment with stop function, electric brake type scale model propulsion system is designed and fabricated by control of the braking torque is proposed. Scale model system for motor-driven, inertial load, the structure of the load for the motor and the inverter system was constructed with two sets of converters, the actual range of the rotational speed of the vehicle DDM experiments to be able to. In Additional, observer to estimate the rotor position and speed of using resolver, and the pole at low speed, speed detection methods have been developed. As a result of this study, first, stop the moment Second, the reduction of braking torque, and how to initiate the operation of the air brake blending by using the braking, improve braking methods that only use the electric brake to stop brought.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

A Study on the Regenerative Braking Control by means of Extending Brake Power of the Permanent Magnet Synchronous Motor(PMSM) (PMSM의 제동력 확보에 의한 회생제동 제어에 관한 연구)

  • Hwang, Lark-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.760-771
    • /
    • 2012
  • In this paper, a blind spot of motor car, and the put case that is driven the miniature model motor system, when make practical application of the permanent magnet synchronous motors(PMSM) braking and having had the ability that can all absorb regenerative power by means of electric brake which is occurred. a tow system of a miniature model motor traction system is established by 1C1M methods to control individually permanent magnet synchronous motors (PMSM) of each motor. vector control method is applied in order to improve ride quality of motor car and the efficient use of energy. it was obtained excellent experiment results from the simulations as a function of momentum load and miniature model. Also, this study is investigated the regenerative braking power securities of permanent magnet synchronous motors, speed detection to stop electric brake at extremely very low speed and motor control method of algorithm.

A study on Dynamic Characteristics of Hydraulic Motor Brake System Integrated Counter Balance Valve (유압 모터 브레이크 시스템의 동특성에 관한연구)

  • Yun, So-Nam;Kim, Hyeong-Ui
    • 한국기계연구소 소보
    • /
    • s.20
    • /
    • pp.27-32
    • /
    • 1990
  • A counter balance valve is used as one part of hydraulic motor brake system. The function of this valve is to protect over-run or free falling of inertia load. But occasionally the brake system with counter balance valve makes some undesirable problems such as pressure surges or vibrations. In this study, for the purpose of easy estimation about dynamic chrcteristics of hydraulic system including counter balance valve, precise formulation describing fluid dynamics and valve dynamics under various boundary conditions were made. dynamic caracteristics were analysed by numerical intergration using Runge-Kutta method, because the equations in this circuit with counter balance valve contain various nonlinear terms. So the analyzing method developed in this study enabled very easy estimating the relation between the performance of counter balance valve and various physical parameters related to the valve.

  • PDF

Analysis of the Front Disk Brake Squeal Using Kriging Method (크리깅기법을 이용한 전륜 디스크 브레이크 모델의 스퀼 저감 해석)

  • Sim, Hyun-Jin;Park, Sang-Gil;Kim, Heung-Seob;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1042-1048
    • /
    • 2008
  • Disc brake noise is an important customer satisfaction and warranty issue for many manufacturers as indicated by technical literature regarding the subject coming from Motor Company. This research describes results of a study to assess disk brake squeal propensity using finite element methods and optimal technique (Kriging). In this study, finite element analysis has been performed to determine likely modes of brake squeal. This paper deals with friction-induced vibration of disc brake system under contact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigen-values are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model. In this paper, Kriging from among the meta-modeling techniques is proposed for an optimal design scheme to reduce the brake squeal noise.