• Title/Summary/Keyword: motion vector accuracy

Search Result 113, Processing Time 0.025 seconds

Facial Gaze Detection by Estimating Three Dimensional Positional Movements (얼굴의 3차원 위치 및 움직임 추정에 의한 시선 위치 추적)

  • Park, Gang-Ryeong;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.23-35
    • /
    • 2002
  • Gaze detection is to locate the position on a monitor screen where a user is looking. In our work, we implement it with a computer vision system setting a single camera above a monitor and a user moves (rotates and/or translates) his face to gaze at a different position on the monitor. To detect the gaze position, we locate facial region and facial features(both eyes, nostrils and lip corners) automatically in 2D camera images. From the movement of feature points detected in starting images, we can compute the initial 3D positions of those features by camera calibration and parameter estimation algorithm. Then, when a user moves(rotates and/or translates) his face in order to gaze at one position on a monitor, the moved 3D positions of those features can be computed from 3D rotation and translation estimation and affine transform. Finally, the gaze position on a monitor is computed from the normal vector of the plane determined by those moved 3D positions of features. As experimental results, we can obtain the gaze position on a monitor(19inches) and the gaze position accuracy between the computed positions and the real ones is about 2.01 inches of RMS error.

Realtime No-Reference Quality-Assessment Over Packet Video Networks (패킷 비디오 네트워크상의 실시간 무기준법 동영상 화질 평가방법)

  • Sung, Duk-Gu;Kim, Yo-Han;Hana, Jung-Hyun;Shin, Ji-Tae
    • Journal of Broadcast Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-396
    • /
    • 2009
  • No-Reference video-quality assessments are divided into two kinds of metrics based on decoding pixel domain or the bitstream one. Traditional full-/reduced- reference methods have difficulty to be deployed as realtime video transmission because it has problems of additional data, complexity, and assessment accuracy. This paper presents simple and highly accurate no-reference video-quality assessment in realtime video transmission. Our proposed method uses quantization parameter, motion vector, and information of transmission error. To evaluate performance of the proposed algorithm, we perform subjective test of video quality with the ITU-T P.910 Absolute Category Rating(ACR) method and compare our proposed algorithm with the subjective quality assessment method. Experimental results show the proposed quality metric has a high correlation (85%) in terms of subjective quality assessment.

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

A Beamforming Method for a Perturbed Linear Towed Array (비선형 형상 견인 어레이를 위한 빔형성 기법)

  • 김승일;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.478-484
    • /
    • 2002
  • Linear towed arrays (LTA) have a nonlinear shape due to tow vessel motion, ocean swells and currents. By reasons of nominally linear shape, various towed array shape estimation techniques have been developed since the perturbed shape cause the error in target detection. In this paper,, we propose the beamforming method for the perturbed LTA with simple structure. The proposed method linearizes a nonlinear phase of steering vector with position information measured by two reference sensors. It can be proved using some properties of Markov transition matrix, and iteration number of linearization process is decided by variance of cross phase difference. As a result of computer simulation in the ocean environment, beampattern of the proposed method is almost same with the ideal case in my type of array shape. In the signal-to-noise ratio (SNR) performance simlation, the DOA estimation performance of the proposed beamforming method is evaluated, and the comparison with Bartlett beamformer of the LTA shows that the proposed method can estimate. the spatial characteristic of sources more accuracy.

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.53-60
    • /
    • 2009
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking; and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Active Facial Tracking for Fatigue Detection (피로 검출을 위한 능동적 얼굴 추적)

  • 박호식;정연숙;손동주;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.603-607
    • /
    • 2004
  • The vision-based driver fatigue detection is one of the most prospective commercial applications of facial expression recognition technology. The facial feature tracking is the primary technique issue in it. Current facial tracking technology faces three challenges: (1) detection failure of some or all of features due to a variety of lighting conditions and head motions; (2) multiple and non-rigid object tracking and (3) features occlusion when the head is in oblique angles. In this paper, we propose a new active approach. First, the active IR sensor is used to robustly detect pupils under variable lighting conditions. The detected pupils are then used to predict the head motion. Furthermore, face movement is assumed to be locally smooth so that a facial feature can be tracked with a Kalman filter. The simultaneous use of the pupil constraint and the Kalman filtering greatly increases the prediction accuracy for each feature position. Feature detection is accomplished in the Gabor space with respect to the vicinity of predicted location. Local graphs consisting of identified features are extracted and used to capture the spatial relationship among detected features. Finally, a graph-based reliability propagation is proposed to tackle the occlusion problem and verify the tracking results. The experimental results show validity of our active approach to real-life facial tracking under variable lighting conditions, head orientations, and facial expressions.

  • PDF

Study of Machine Learning based on EEG for the Control of Drone Flight (뇌파기반 드론제어를 위한 기계학습에 관한 연구)

  • Hong, Yejin;Cho, Seongmin;Cha, Dowan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.249-251
    • /
    • 2022
  • In this paper, we present machine learning to control drone flight using EEG signals. We defined takeoff, forward, backward, left movement and right movement as control targets and measured EEG signals from the frontal lobe for controlling using Fp1. Fp2 Fp2 two-channel dry electrode (NeuroNicle FX2) measuring at 250Hz sampling rate. And the collected data were filtered at 6~20Hz cutoff frequency. We measured the motion image of the action associated with each control target open for 5.19 seconds. Using Matlab's classification learner for the measured EEG signal, the triple layer neural network, logistic regression kernel, nonlinear polynomial Support Vector Machine(SVM) learning was performed, logistic regression kernel was confirmed as the highest accuracy for takeoff and forward, backward, left movement and right movement of the drone in learning by class True Positive Rate(TPR).

  • PDF

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.

Development of Exercise Analysis System Using Bioelectric Abdominal Signal (복부생체전기신호를 이용한 운동 분석 시스템 개발)

  • Gang, Gyeong Woo;Min, Chul Hong;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.183-190
    • /
    • 2012
  • Conventional physical activity monitoring systems, which use accelerometers, global positioning system (GPS), heartbeats, or body temperature information, showed limited performances due to their own restrictions on measurement environment and measurable activity types. To overcome these limitations, we developed a portable exercise analysis system that can analyze aerobic exercises as well as isotonic exercises. For bioelectric signal acquisition during exercise, waist belt with two body contact electrodes was used. For exercise analysis, the measured signals were firstly divided into two signal groups with different frequency ranges which can represent respiration related signal and muscular motion related signal, respectively. After then, power values, differential of power values, and median frequency values were selected for feature values. Selected features were used as inputs of support vector machine (SVM) to classify the exercise types. For verification of statistical significance, ANOVA and multiple comparison test were performed. The experimental results showed 100% accuracy for classification of aerobic exercise and isotonic resistance exercise. Also, classification of aerobic exercise, isotonic resistance exercise, and hybrid types of exercise revealed 92.7% of accuracy.