• Title/Summary/Keyword: motion research

Search Result 4,538, Processing Time 0.034 seconds

Using Animation Database Interactively on the Network

  • Tam, K.Y.;Sato, H.;Kondo, K.;Shimada, S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.7-12
    • /
    • 1996
  • This research is on an interactive animation prototype which can be used by many users from different computers, that means a network with one server and many clients. In our research, a complete motion is represented by simple motion characteristics. We establish databases which contain all kinds of human motion characteristics. Using flexible connection and appropriate time control, we are able to recompose a sequential serial motion data. Moreover, an interactive application system is needed among the uses with a server from animator. In this research, we also investigate three methods of“connect motion database”. We are planing to use the method of connecting motion database under networks with a client-server application system.

  • PDF

Motion Response Characteristics of Small Fishing Vessels of Different Sizes among Regular Waves

  • DongHyup Youn;LeeChan Choi;JungHwi Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The motion of small fishing vessels is significantly affected by small waves, leading to accidents, such as capsizing or sinking. This paper presents the results of two types of basin tests. The first test analyzed the characteristics of roll and pitch motions among regular waves with the same wave steepness using the drifting state of three (3G/T, 7G/T, 10G/T) small fishing vessels. The second test analyzed the motion characteristics of the 7G/T fishing vessel under different wave steepness. The first test showed that heave and roll motions are significant in the beam sea, while pitch motion is significant in the bow and stern seas. The second test shows that wave steepness has a linear relationship with roll and pitch motions in the bow and stern seas.

Heading Control of a Turret Moored Offshore Structure Using Resolved Motion and Acceleration Control

  • Kim, Young-Shik;Sung, Hong-Gun;Kim, Jin-Ha
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • This paper addresses the heading control of an offshore floating storage and regasification unit (FSRU) using a resolved motion and acceleration control (RMAC) algorithm. A turret moored vessel tends to have the slewing motion. This slewing motion may cause a considerable decrease in working time in loading and unloading operation because the sloshing in the LNG containment tank might happen and/or the collision between FSRU and LNGC may take place. In order to deal with the downtime problem due to this slewing motion, a heading control system for the turret moored FSRU is developed, and a series of model tests with azimuth thrusters on the FSRU is conducted. A Kalman filter is applied to estimate the low-frequency motion of the vessel. The RMAC algorithm is employed as a primary heading control method and modified I-controller is introduced to reduce the steady-state errors of the heading of the FSRU.

Motion Behavior of Platform Supply Vessels Running Under Regular Wave Conditions in RANS Model

  • Park, Huiseung;Jang, Hoyun;Ahn, Namhyun;Yoon, Hyunsik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.366-372
    • /
    • 2019
  • This study performed a numerical analysis of a 3D unsteady viscous flow in order to investigate ship motion responses running through regular waves of the platform supply vessel. The feasibility of numerical analysis was tested under the three regular wave conditions of the KRISO container ship (KCS) suggested at the 2010 Gothenburg CFD Workshop. The resulting resistance coefficient, heave motion, and pitch angle were compared with the model test of the harmonic analysis. Also, the ship motion response characteristics of the platform supply vessel were performed using the proven method of the KRISO container ship (KCS). The ship motions including the resistance coefficient, heave motion, and pitch angle according to the time series were investigated via harmonic analysis under regular waves condition of ${\lambda}/LPP=1.87$ and $H_S=0.078m$.

Development of Acupuncture Manipulation Education System (침자 수기법 교육 시스템 개발)

  • Lim, Jin Woong;Jung, Won Mo;Lee, In Seon;Seo, Yoon Jeong;Ryu, Ho Sun;Ryu, Yeon Hee;Chae, Youn Byoung
    • Journal of Acupuncture Research
    • /
    • v.31 no.4
    • /
    • pp.11-19
    • /
    • 2014
  • Objectives : Acupuncture manipulation, a kind of sophisticated hand movements, has been considered a fundamental skill for acupuncture practice. In this study, we aimed to develop acupuncture manipulation education system(AMES) using visual feedback of acupuncture manipulation. We also investigated whether or not acupuncture practice-$na{\ddot{i}}ve$ students could enhance their acupuncture manipulation skills after AMES training. Methods : Using AMES and motion sensor, we visualized a time-series motion template(intended motion) and participant's own motion(actual motion) manipulating an acupuncture needle. Ten students were trained with complex lifting/thrusting techniques for 8 training trials. We compared the motion pattern error of the students between the first and the last trials. Results : In our pilot experiment, half of the participants showed significantly improved manipulation skills in complex lifting/thrusting techniques after training with AMES which is developed in this study, while the other half of the participants did not show significant improvements. Conclusions : The AMES could be useful in acupuncture-manipulation training for students. Our findings suggest that novice can improve sophisticated hand movement for acupuncture manipulation with sensorimotor learning using visual feedback.

A Kinematical Analysis of Forward Handspring Motion (핸드스프링 동작의 운동학적 분석)

  • Bae, Nam-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.89-100
    • /
    • 2003
  • In this research was to analyze 3-D kinematics variables for handspring of basic motion in the heavy gymnastics in order to investigate kinematical difference between expert and novice. Therefore, the purpose of this research was provide quantitative information, systematic provision, rules, establishment of basic skill for improving skill and teaching athletes. And in the research, results were as followings. 1. In the time variables, total time was that expert took 0.745sec and novice took 0.829sec, and as duration time of each event, expert was faster than novice in the all motion event except till second event of the preparation motion. 2. In the center of body variables, vertical direction variables, the displacement of body center hight was that expert showed 61.26% and novice showed 54.48% in the third event of all motion, also all event were showed expert was higher displacement than novice except first of event in preparatory stage. 3. In the angle displacement of main joint, the right direction was that expert showed 154.12degree and novice showed 174.85degree and the left direction was that expert showed 159.29degree and novice showed 171.46degree In the second event of main joint curved point at the same time hand was reached floor. In the angle displacement of knee joint in the third event of all motion, expert showed 155.25degree and novice showed 154.00degree In right, and expert showed 155.24degree and novice showed 154.55degree in left. In this result, both were same motion type. In the angle displacement of hip joint in the third event of the all motion, expert showed 142.80degree and novice showed 134.17degree in right, and expert showed 140.28degree and novice showed 144.94degree in left. In this result, motion pattern of expert was same both sides, but novice was different. According to the results, to increase efficiency of motion and aesthetic effect in the all motion, it should stretch displacement and height of body center and make similarly angle of right and left joint.

Comparison of EMG Activity during Horticulture Motion and Rehabilitation Motion of Upper Limb

  • Seong-Kwang Yoo;Seung-Hwa Jung;Jae-Soon Kim;Sun-Jin Jeong;Yong-Ku Kang;Yeo-Jin Jeong;Eun-Ha Yoo;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.400-408
    • /
    • 2022
  • Objective: The purpose of this study is to compare EMG activity during horticulture motion and upper limb rehabilitation motion, to confirm whether horticulture motion is suitable for upper extremity rehabilitation of hemiparesis. Design: Three-group cross-sectional design. Methods: The 45 subjects were divided into three groups: hemiparesis (n=15), elderly (n=15) and healthy (n=15). We have recorded EMG signals of six upper limb muscles Upper trapezius (UT), Middle deltoid (MD), Anterior deltoid (AD), Biceps brachii (BB), Triceps brachii (TB), Brachioradialis (BR) during horticultural motions and three upper limb rehabilitative motions. The dependent variables were peak EMG, integral EMG, co-contraction ratio. A two-way repeated measures ANOVA was used to compare the horticultural motion and rehabilitation motion of the three groups. Results: The peak EMG was significantly different in MD, AD, BB, TB according to the motion(p<0.05), and the UT, BB were significant differences according to the group(p<0.05). The integral EMG was significantly different in MD, AD, BB, TB, BR according to the motion(p<0.05), and the BB were significant differences according to the group(p<0.05). The co-contraction ratio was significantly different in TB/BB according of the motion, and there was no difference between the groups. Conclusions: As a result of this study, horticultural motion alone was insufficient for upper arm rehabilitation, and horticultural motion alone was insufficient to induce continuous activity of the forearm.

A Study on 3-D Dynamic Characteristic of Gantry Crane (갠트리 크레인의 3차원 동특성에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.153-158
    • /
    • 2000
  • The sway motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to investigate the phenomenon that the load is taken by the sway motion of crane. For deriving the dynamic equations related to the swing motion of crane, we introduced a conception of spring and damper in the upper part of the crane. During the crane and trolley is driving along the velocity profile, the swing motion of the spreader and crane will be simulated. The simulation result of the equation of motion using the Runge-Kutta method is presented in this paper. And we will show an effect of the swing of the crane in this research.

  • PDF

A HIGH PRECISION CAMERA OPERATING PARAMETER MEASUREMENT SYSTEM AND ITS APPLICATION TO IMAGE MOTION INFERRING

  • Wentao-Zheng;Yoshiaki-Shishikui;Yasuaki-Kanatsugu;Yutaka-Tanaka
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.77-82
    • /
    • 1999
  • Information about camera operating such as zoom, focus, pan, tilt and tracking is useful not only for efficient video coding, but also for content-based video representation. A camera operating parameter measurement system designed specifically for these applications is therefore developed. This system, implemented in real time and synchronized with the video signal, measures the precise camera operating parameters. We calibrated the camera lens using a camera model that accounts for redial lens distortion. The system is then applied to infer image motion from pan and tilt operating parameters. The experimental results show that the inferred motion coincides with the actual motion very well, with an error of less than 0.5 pixel even for large motion up to 80 pixels.

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.