• Title/Summary/Keyword: motion parallax

Search Result 56, Processing Time 0.021 seconds

A Quadtree-based Disparity Estimation for 3D Intermediate View Synthesis (3차원 중간영상의 합성을 위한 쿼드트리기반 변이추정 방법)

  • 성준호;이성주;김성식;하태현;김재석
    • Journal of Broadcast Engineering
    • /
    • v.9 no.3
    • /
    • pp.257-273
    • /
    • 2004
  • In stereoscopic or multi-view three dimensional display systems, the synthesis of intermediate sequences is inevitably needed to assure look-around capability and continuous motion parallax so that it could enhance comfortable 3D perception. The quadtree-based disparity estimation is one of the most remarkable methods for synthesis of Intermediate sequences due to the simplicity of its algorithm and hardware implementation. In this paper, we propose two ideas in order to reduce the annoying flicker at the object boundaries of synthesized intermediate sequences by quadtree-based disparity estimation. First, new split-scheme provides more consistent auadtree-splitting during the disparity estimation. Secondly, adaptive temporal smoothing using correlation between present frame and previous one relieves error of disparity estimation. Two proposed Ideas are tested by using several stereoscopic sequences, and the annoying flickering is remarkably reduced by them.

Displacement Mapping for the Precise Representation of Protrusion (정확한 돌출 형상의 표현을 위한 변위매핑)

  • Yoo, Byoung-Hyun;Han, Soon-Hung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.777-788
    • /
    • 2006
  • This paper describes a displacement mapping technique which represents protruded shapes on the surface of an object. Previous approaches for image-based displacement mapping can represent only shapes depressed from the polygon surface. The proposed technique can represent shapes protruded from the underlying surface in real-time. Two auxiliary surfaces which are perpendicular to the underlying surface are added along the boundary of the polygon surface, in order to represent the pixels which overflow over the boundary of the polygon surface. The proposed approach can represent accurate silhouette of protruded shape. It can represent not only smooth displacement of protruded shape, but also abrupt displacement such as perpendicular protrusion by means of adding the supplementary texture information to the steep surface of protruded shape. By per-pixel instructions on the programmable GPU this approach can be executed in real-time. It provides an effective solution for the representation of protruded shape such as high-rise buildings on the ground.

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak;Chung, Sun-Ju;Udalski, A.;Bond, Ian A.;Jung, Youn Kil;Gould, Andrew;Albrow, Michael D.;Han, Cheongho;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.161-168
    • /
    • 2020
  • We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.

Study of Animation 3-Dimensional Motion Picture (애니메이션 입체 영화에 대한 연구)

  • Min, Kyung-Mi
    • Cartoon and Animation Studies
    • /
    • s.9
    • /
    • pp.127-142
    • /
    • 2005
  • Not only in Korea but throughout the entire world millions of people are in contact with images. Images have become a medium through which to transmit anything from simple visualizations of moving images to knowledge and information. The age of the internet has arisen thanks to scientific development, and the internet generation's acquisition of information is continuously becoming faster. The spectators, ufo must choose amongst the excessive amount of available information, are changing along with it just as quickly. The method of visual transmission has changed to match the demands of the fast-changing pace of the new generation. In order to receive an instantaneous selection amongst much information, the primary requisite is attracting one's attention, and then presenting a corresponding feeling of satisfaction. The early stages of film arose from the desire to capture one's actual situation as it realty is. Unsatisfied with the still picture, people developed the motion picture. Research has succeeded in reproducing 3-dimensional images more realistic than the actual image we perceive as a result of the difference in visual perspective of both eyes and their response to rays of light From color film to 3-dimensional pictures, people enjoy the magnificent results of this. All fields within the category of film are continuously studying the human desire to pursue their visual side, namely the pursuit of visual images with a maximum sense of reality. The images that millions of people around the world see now are flat. The screen's depth and optical illusions effectively give a sense of reality while conveying information. However, although the flat screen is able to create a sense of depth using the different visual perspective of each eye for the realization of a cubic effect, there are limitations. Entering the 21s1 century, there is a quickly-arising branch within the field of image media which seeks to overcome these limitations Although 3-dimensional images began in films, entering the latter half of the 20th century, due to development of 3-dimensional images using the mediums of the animation field, cellular phones, advertisement screens, television etc., without restriction is designated as 'image.'. With research having started around 1900 and continuing for over 100 years, we are now able to witness the popularization of 3-dimensional films happening before our very eyes. Within our own country, we can frequently see them at amusement parks and museums. In the future, through the popularization of HDTV etc., there is a good outlook for practical use of 3-dimensional images in televisions with advanced picture qualify as well as in other areas. Together with the international current, research on 3-dimensional films has been activated in Korea and is rising as a main current in the film industry. Within this context, the contents and understanding of 3-dimensional images must keep in step with the pace of technical advancements. In order to accelerate of development of film contents to keep in pace with technical developments, this dissertation presents the techniques and technical aspects of future developments, and shows the need to prepare in advance to make the field grow- and thereby avoid having a lack of experts and being conquered by other nations in the field - rather than only advancing the technical aspects and importing the contents. This dissertation aims to stimulate interest and continual research by progressive-thinking people related to the film industry. Part II looks into the definition and types of 3-dimensional motion pictures, the terminology, the fundamentals of image formation, current market fluctuations, and looks into 3-dimensional techniques which can be borrowed and introduced in 3-dimensional animations. Part III concerns 3-dimensional animated films. It analyzes 3-dimensional production techniques while using the introduction of specific animation techniques in the 2004 production Lee Sun Shin and Nelson - Naval Heroes 3-dimensional animation produced in 2004 by Clay & Puppet Stop-Motion Animation & Computer Graphic. Original Korean title: 해전영웅 이순신과 넬슨. as an example, and it also looks into how current film techniques used in animations can be applied in 3-dimensional films. Additionally, the actual stages of the various fields of 3-dimensional animations are presented. Given the current direction and advancement of 3-dimensional films making use of animations and the possible realization of this field, the author plans to weigh the development of this yet unexploited new market Not looking at the current progress of the field, but rather the direction of the hypothetical types of animation techniques, the author predicts the marketability and possibility of development of each area.

  • PDF

Three-Dimensional Conversion of Two-Dimensional Movie Using Optical Flow and Normalized Cut (Optical Flow와 Normalized Cut을 이용한 2차원 동영상의 3차원 동영상 변환)

  • Jung, Jae-Hyun;Park, Gil-Bae;Kim, Joo-Hwan;Kang, Jin-Mo;Lee, Byoung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • We propose a method to convert a two-dimensional movie to a three-dimensional movie using normalized cut and optical flow. In this paper, we segment an image of a two-dimensional movie to objects first, and then estimate the depth of each object. Normalized cut is one of the image segmentation algorithms. For improving speed and accuracy of normalized cut, we used a watershed algorithm and a weight function using optical flow. We estimate the depth of objects which are segmented by improved normalized cut using optical flow. Ordinal depth is estimated by the change of the segmented object label in an occluded region which is the difference of absolute values of optical flow. For compensating ordinal depth, we generate the relational depth which is the absolute value of optical flow as motion parallax. A final depth map is determined by multiplying ordinal depth by relational depth, then dividing by average optical flow. In this research, we propose the two-dimensional/three-dimensional movie conversion method which is applicable to all three-dimensional display devices and all two-dimensional movie formats. We present experimental results using sample two-dimensional movies.

Toward 6 Degree-of-Freedom Video Coding Technique and Performance Analysis (6 자유도 전방위 몰입형 비디오의 압축 코덱 개발 및 성능 분석)

  • Park, Hyeonsu;Park, Sang-hyo;Kang, Je-Won
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1035-1052
    • /
    • 2019
  • Recently, as the demand for immersive videos increases, efficient video processing techniques for omnidirectional immersive video is actively developed by MPEG-I. While the omnidirectional video provides a larger degree of freedom for a free viewpoint, the size of the video increases significantly. Furthermore, in order to compress 6 degree-of-freedom (6 DoF) videos that support motion parallax, it is required to develop a codec to yield better coding efficiency. In this paper, we develop a 6 DoF codec using Versatile Video Coding (VVC) as the next generation video coding standard. To the authors' best knowledge, this is the first VVC-based 6 DoF video codec toward the future ISO/IEC 23090 Part 7 (Metadata for Immersive Media (Video)) MPEG-I standardization. The experiments were conducted on the seven test video sequences specified in Common Test Condition (CTC) in two operation modes of TMIV (Test Model for Immersive Media) software. It is demonstrated that the proposed codec improves coding performance around 33.8% BD-rate reduction in the MIV (Metadata for Immersive Video) mode and 30.2% BD-rate reduction in the MIV view mode as compared to the state-of-the-art TMIV reference software. We also show the performance comparisons using Immersive Video PSNR (IV-PSNR) and Mean Structural Similarity (MSSIM).