• 제목/요약/키워드: motion of the moon

검색결과 846건 처리시간 0.035초

EXPERIMENTAL DEMONSTRATION OF ADVANTAGE OF MOTION INDUCED SYNTHETIC APERTURE RADIOMETER

  • Park, Hyuk;Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Yu, Hwan-Wook;NamGoong, Up;Sim, Won-Seon;Kim, Yong-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.22-25
    • /
    • 2008
  • Aperture synthesis with platform motion has been presented as a useful tool to achieve the high spatial resolution imaging. Using a motion induced synthetic aperture radiometer (MISAR), a passive microwave image can be achieved with a small number of antennas. Moreover, the MISAR is capable of imaging better than the case without motion, using the same configuration of antenna array. With a platform motion, visibility can be sampled more efficiently, and as a result the imaging performance of the MISAR shows higher quality than the case without platform motion. In this paper, the advantage of MISAR is demonstrated experimentally. Using a laboratory model of inteferometric radiometer, the point source images are obtained under the condition with platform motion and without platform motion. In the experimental results, the point source response of the MISAR shows better quality of sidelobe level and beam efficiency than the case without platform motion.

  • PDF

6-자유도 초정밀 위치 결정 스테이지의 비선형성 식별을 위한 로스트 모션 해석 (Lost Motion Analysis for Nonlinearity Identification of a 6-DOF Ultra-Precision Positioning Stage)

  • 신현표;문준희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.263-268
    • /
    • 2015
  • This paper describes lost motion analysis for a novel 6-DOF ultra-precision positioning stage. In the case of flexure hinge based precision positioning stage, lost motion is generated when the displacement of actuator is not delivered completely to the end-effector because of the elasticity of flexure hinge. Consequently, it is need to compute amount of lost motion to compensate the motion or to decide appropriate control method for precision positioning. Lost motion analysis for the vertical actuation unit is presented. The analysis results are presented in two ways: analytic and numerical analyses. It is found that they closely coincide with each other by 1% error. In finite element analysis result, the amount of lost motion is turned out to be about 3%. Although, the amount is not so large, it is necessary procedure to check the lost motion to establish the control method.

자유-자유보의 동적해석에 대한 섭동법의 적용 (Application of Perturbation Method to the Dynamic Analysis of Free-free Beam)

  • 곽문규
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

수축팽창 운동에 의한 축대칭 마이크로-하이드로-머신의 추진을 위한 수치 시뮬레이션 (A Numerical Simulation for the Propulsion of Axisymmetric Micro-Hydro-Machine by Contractive and Dilative Motion)

  • 김문찬
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.30-37
    • /
    • 2001
  • A Numerical simulation for the propulsion of axisymmetric body by contractive and dilative motion is carried out. The present analysis shows that a propulsive force can be obtained in highly viscous fluid by a contractive and dilative motion of axisymmetric body. An axisymmetric analysis code is developed with unstructured grid system for the simulation of complicated motion and geometry. The developed code is validated by comparing with the results of stokes approximation with the problem of uniform flow past a sphere in low Reynolds number($R_n=1$). The validated code is applied to the simulation of contractive and dilative motion of body. The simulation is extended to the analysis of waving surface with projecting part for finding out the difference of hydrodynamic performance according to the variation of waving surface configuration. The present study will be the basic research for the development of the propulsor of an axisymmetric micro-hydro-machine.

  • PDF

자유-자유보의 동적해석에 대한 섭동법의 적용 (Application of Perturbation Method to the Dynamic Analysis of Free-free Beam)

  • 곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.300-306
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of .perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

  • PDF

Characteristics of Perturbations in Recent Length of Day and Polar Motion

  • Na, Sung-Ho;Kwak, Younghee;Cho, Jung-Ho;Yoo, Sung-Moon;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권1호
    • /
    • pp.33-41
    • /
    • 2013
  • Various features of the existing perturbations in the Earth's spin rotation are investigated for the recent and most reliable data by spectral analysis, filtering, and comparison with idealized model. First, theory of Earth's spin rotational perturbation is briefly re-derived in the Earth-fixed coordinate frame. By spectral windowings, different periodic components of the length of day perturbation are separated, and their characters and excitations are discussed. Different periodic components of polar motion are acquired similarly and described with further discussion of their excitations. Causes of the long time trends of both the length of day and polar motion are discussed. Three possible causes are considered for the newly discovered 490-day period component in the polar motion.

최단 거리 삼각형 패치 형성법을 이용한 무릎 관절의 3차원 형상 모델링과 시뮬레이션 (Modeling and Simulation of Human Knee Joint in Three Dimension By Using the Method of Optimal Triangular Patches)

  • 문병영;손권;김광훈;서정탁
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.205-212
    • /
    • 2003
  • Many people are exposed to accidents by vehicles or sports. The most frequent injuries by these accidents is concerned with a knee joint. The three-dimensional surface model of a knee is needed for dynamic analysis of knee motion and knee reconstruction. three-dimensional motion data of a knee joint were obtained using X-ray and precise magnetic sensors. The surface data of a femur and a tibia were obtained using cross-sectional pictures by CT. The three-dimensional surface models of a femur and a tibia were made by the method of optimal triangular patch. Using obtained motion data, we simulated the motion of three-dimensional knee joint model.

변환 영역에서 개선된 DCT를 기반으로 한 움직임 예측 및 보상 (Motion Estimation and Compensation based on Advanced DCT)

  • 장영;조효문;조상복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.38-40
    • /
    • 2007
  • In this paper, we propose a novel architecture, which is based on DCT (Discrete Cosine Transform), for ME (Motion Estimation) and MC (Motion Compensation). The traditional algorithms of ME and MC based on DCT did not suffer the advantage of the coarseness of the 2-dimensional DCT (2-D DCT) coefficients to reduce the operational time. Therefore, we derive a recursion equation for transform-domain ME and MC and design the structure by using highly regular, parallel, and pipeline processing elements. The main difference with others is removing the IDCT block by using to transform domain. Therefore, the performance of our algorithm is more efficient in practical image processing such as DVR (Digital Video Recorder) system. We present the simulation result which is compare with the spatial domain methods. it shows reducing the calculation cost. compression ratio. and peak signal to noise ratio (PSNR).

  • PDF

모바일 장치에서의 이미지 브라우징을 위한 동작 추적 기반 인터페이스의 설계 및 평가 (Design and Evaluation of Motion-based Interface for Image Browsing in Mobile Devices)

  • 임성훈;최승문
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.40-44
    • /
    • 2009
  • 이 논문에서, 모바일 장치에서의 이미지 브라우징을 위한 모션 기반 상호 작용 방식의 가능성을 평가하였다. 이를 위해 모션을 기반으로 한 인터페이스와 상호작용 방법을 디자인 하였다. 디자인된 인터페이스를 평가하기 위해 이를 현재 모바일 장치에서 사용 가능한, 가속도계와 비전을 이용한 하드웨어와 고성능의 트랙커를 이용한 하드웨어로 구현하여 버튼 인터페이스와 비교 실험을 하였다. 그 결과 모션 인터페이스들의 경우 버튼 인터페이스에 비해, 사용자의 흥미를 유발할 수 있었고, 충분한 훈련을 거치면 사용성 및 사용자 성능의 증대 효과도 컸지만 버튼 인터페이스의 성능에는 미치지 못하였다.

  • PDF