• Title/Summary/Keyword: motion of the moon

Search Result 845, Processing Time 0.048 seconds

Characteristics of Heaving Motion of Hollow Circular Cylinder (내부가 빈 원기둥의 수직운동 특성)

  • Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • In the present investigation, the hydrodynamic characteristics of a vertically floating hollow cylinder in regular waves have been studied. The potential theory for solving the diffraction and radiation problem was employed by assuming that the heave response motion was linear. By using the matched eigenfunction expansion method, the characteristics of the exciting forces, hydrodynamic coefficients, and heave motion responses were investigated with various system parameters such as the radius and draft of a hollow cylinder. In the present analytical model, two resonances are identified: the system resonance of a hollow cylinder and the piston-mode resonance in the confined inner fluid region. The piston resonance mode is especially important in the motion response of a hollow circular cylinder. In many cases, the heave response at the piston resonance mode is large, and its resonant frequency can be predicted using the empirical formula of Fukuda (1977). The present design tool can be applied to analyze the motion response of a spar offshore structure with a moon pool.

Proposal of Camera Gesture Recognition System Using Motion Recognition Algorithm

  • Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2022
  • This paper is about motion gesture recognition system, and proposes the following improvement to the flaws of the current system: a motion gesture recognition system and such algorithm that uses the video image of the entire hand and reading its motion gesture to advance the accuracy of recognition. The motion gesture recognition system includes, an image capturing unit that captures and obtains the images of the area applicable for gesture reading, a motion extraction unit that extracts the motion area of the image, and a hand gesture recognition unit that read the motion gestures of the extracted area. The proposed application of the motion gesture algorithm achieves 20% improvement compared to that of the current system.

Development of Simulator and Robotic Door for Parametric Design Optimization of Washing Machine Door Motion (세탁기 도어 거동 인자 설계 최적화를 위한 시뮬레이터 및 로봇형 도어 장치 개발)

  • Yi, June-Sup;Jung, Byung-Jin;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • A design methodology for parametric design optimization of washing machine door is presented. We develop a motion simulator and a robotic door to simulate the various motion of washing machine doors. The motion of the washing machine door is related to hinge parameters. Springs and dampers are usually used in the hinge of washing machine door for controlling motion of the door. A physical simulator of the door motion is used for finding candidate parameters of the hinge and a robotic door whose motion is controlled algorithmically is used for consumer tests. Through the consumer evaluation on the robotic motion, the optimized parameters are determined. We find the optimal parameters as a function of angle and angular velocity of the door.

A Fast Scalable Video Encoding Algorithm (고속 스케일러블 동영상 부호화 알고리듬)

  • Moon, Yong Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.5
    • /
    • pp.285-290
    • /
    • 2012
  • In this paper, we propose a fast encoding algorithm for scalable video encoding without compromising coding performance. Through analysis on multiple motion estimation processes performed at the enhancement layer, we show redundant motion estimations and suggest the condition under which the redundant ones can efficiently be determined without additional memory. Based on the condition, the redundant motion estimation processes are excluded in the proposed algorithm. Simulation results show that the proposed algorithm is faster than the conventional fast encoding method without performance degradation and additional memory.

Implementation of PC Helper System for Overcoming Environmental Obstacles (환경적 장애 극복을 위한 PC Helper 시스템의 구현)

  • Kim, Tae-Woo;Kim, Sung-Ho;Yoon, Young-Jin;Jung, Young-Ae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1683-1685
    • /
    • 2013
  • 이 논문에서는 환경적 장애 극복을 위한 소프트웨어 접근성 향상을 위한 시스템인 PC Helper을 제안한다. P.C Helper는 [Speech Mode]와 [Motion Mode] 두 가지의 모드로 구성된다. [Speech Mode]에서는 UI Speaking Engine을 활용하여 음성으로 응용프로그램을 제어하고, [Motion Mode]에서는 Gesture Engine을 활용하여 모션을 이용한 가상의 키보드와 마우스를 제어할 수 있다. 이 두 가지 기능을 제공하여 환경적 장애가 있는 사람들에게 용이한 인터페이스를 제공하고자 하였다. UI Speaking Mode로 Microsoft Office 응용 프로그램 약 70%정도 제어하는 것이 가능하였다.

An Analysis of Human Knee Joint Motion for Anterior Cruciate Ligament reconstruction (전십자 인대 재건을 위한 인체 슬관절의 굴신 운동 해석)

  • Moon, Byung-Young;Son, Kwon;Park, Jung-Hong;Suh, Jeung-Tak
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.929-934
    • /
    • 2003
  • Three dimensional joint motion data were obtained using precise magnetic sensors and X-ray. Six metal markers were inserted on the femur and the tibia to set the coordinate system. Two magnetic position sensors were used to record motion data and these positions were transformed into the knee motion. The quadriceps muscle was extended in an automatic manner by an extraction machine. Results of the knee motion were the same as the clinical data. The proposed method is found to be reasonable in describing the knee motion so that these motion data can be used to simulate the normal knee joint.

  • PDF

The Influence of Augmented Reality based Knee Exercise in Short Period on Range of Motion and Balance - Pilot study (증강현실 기반의 단기간 무릎운동이 관절가동범위와 균형에 미치는 영향 - 예비연구)

  • Im, JongHun;Yu, JaeHo
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: This study investigated the effect of the augmented reality (AR)-based knee joint short period exercise program and used a motion analyzer with a 3D camera to determine the range of motion and dynamic balance and further investigate the effects of therapeutic exercise on patients. Methods: This study used AR-based motion analysis and a Y-balance test to measure the range of motion (ROM) of each joint: the hip joint and the knee joint. After the measurements, an exercise program was applied to the subjects, using the knee motion program function, and the muscles of the quadriceps femoris and the hamstring were stretched or strengthened. Results: Our results showed knee joint extension at the dominant hip joint flexion position. While there was no significant difference (p>.05) at this position, there were significant differences in the non-dominant hips, unbalanced knee joint flexion, and superior knee joint flexion (p<.05). The Y-balance test using the non-dominant leg supported by the dominant legs showed that the absolute reach was $69.70{\pm}7.06cm$ before the exercise, and the absolute reach after the exercise was $77.56{\pm}6.09cm$ (p<.05). Conclusions: There was a significant difference when the movement of the lower limbs supported the superior limbs, and a significant difference was found in the ROM when the non-dominant side supported the dominant side. Therefore, the AR-based exercise program improves the balance of the human body and the range of motion of the joints, and research that aims to improve patients abilities should continue.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.

A Method to Describe and Analyze Human Knee Joint Motion (인체 무릎 관절의 굴신 운동 해석 기법)

  • Moon, Byung-Young;Son, Kwon;Park, Jung-Hong;Seo, Jung-Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.233-239
    • /
    • 2003
  • Three dimensional joint motion data were obtained using X-ray and precise magnetic sensors. Six metal markers were inserted on the femur and the tibia to set the coordinate system. Two magnetic position sensors were used to record motion data and these positions were transformed into the knee motion. The quadriceps muscle was extended in an automatic manner by an extraction machine. Results of the knee joint motion were the same as the clinical data. The proposed method is found to be reasonable in describing the knee motion so that these motion data can be used to simulate the normal knee joint.

The Complexity Evaluation System of Automobile Subassembly for Recycling (자원 재활용을 위한 자동차 조립군의 복잡도 평가시스템)

  • Mok, Hak-Soo;Moon, Kwang-Sup;Kim, Sung-Ho;Moon, Dae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.132-144
    • /
    • 1999
  • In this study, the complexity of the product was evaluated quantitatively considering the product structure, assembly process and disassembly process. To evaluate the complexity of the product, subassemblies of automobile were analyzed and then characteristics of part and subassembly were determined according to product structure, assembly process and disassembly process. Evaluation criteria of complexity were determined considering each characteristics of part and subassembly. Experiential evaluation was accomplished by classified evaluation criteria and time-motion evaluation was accomplished by the relational motion factor with characteristics of part and subassembly in MTM(Methods Time Measurement) and WF(Work Factor). The total complexity of product was determined by experiential evaluation and time-motion evaluation.

  • PDF