• Title/Summary/Keyword: motion graphics

Search Result 247, Processing Time 0.023 seconds

A Study on the Tendencies of the Motion Graphic Expressions in the Title sequence (타이틀 시퀀스에서 모션그래픽의 표현경향에 관한 연구)

  • Jung, Hee-Jin;Na, Jun-Ki
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.195-199
    • /
    • 2006
  • In the field of video design, motion graphics tends to be realized to deliver a certain message properly incorporating basic motion graphics components such as space, form of expression, and time, and has continued to be used as a powerful communication tool. Many cases proved that title sequences were produced as a result of combination of a variety of quick images and effects with appropriately chosen sounds to meet the demands of audience. This study indicated that motion graphics began to be widely used as a more powerful video communication tool for title sequences and also applied for M-NET, DMB, CABLE TV, IPTV, and others.

  • PDF

A Physics-Based Modelling of Multipbase Fluid Phenomena (물리적 모델에 기반한 다상 유체 현상 애니메이션)

  • Song, Oh-Young;Shin, Hyun-Cheol;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.3
    • /
    • pp.52-60
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potentially dissipative cells into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover. the introduction of the non-dissipative technique means that, in contrast 10 previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

A Physics-Based Modelling of Multiphase Fluid Phenomena (물리적 모델에 기반한 다상 유체 현상 애니메이션)

  • Song, Oh-Young;Shin, Hyun-Cheol;Ko, Hyeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potential1y dissipative cel1s into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover, the introduction of the non-dissipative technique means that, in contrast to previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

Isometric Motion Recognition in Computer Animation

  • Lee, Myeong Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.55-63
    • /
    • 1997
  • This paper presents a method of detecting motion isometry from the motions of two objects in a three-dimensional space. We define the motion isometry based on the group theory and a newly defined coordinate system. Motion isometry can be detected using the coordinate system which we call Motion Specific Coordinate System(MSCS). In addition, we present an algorithm if two motions are isometric using the coordinate system. The algorithm can detect the difference in the motions of objects irrespective of their positions or the directions of their motions in a space. The algorithm can also detect the motion difference in the case of segmented objects which have several joints. The motion quantity is represented by translation values or rotation angles about some axes.

  • PDF

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

Automatic Synchronization of Separately-Captured Facial Expression and Motion Data (표정과 동작 데이터의 자동 동기화 기술)

  • Jeong, Tae-Wan;Park, Sang-II
    • Journal of the Korea Computer Graphics Society
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, we present a new method for automatically synchronize captured facial expression data with its corresponding motion data. In a usual optical motion capture set-up, a detailed facial expression can not be captured simultaneously in the motion capture session because its resolution requirement is higher than that of the motion capture. Therefore, those are captured in two separate sessions and need to be synchronized in the post-process to be used for generating a convincing character animation. Based on the patterns of the actor's neck movement extracted from those two data, we present a non-linear time warping method for the automatic synchronization. We justify our method with the actual examples to show the viability of the method.

Body Motion Retargeting to Rig-space (리깅 공간으로의 몸체 동작 리타겟팅)

  • Song, Jaewon;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.3
    • /
    • pp.9-17
    • /
    • 2014
  • This paper presents a method to retarget a source motion to the rig-space parameter for a target character that can be equipped with a complex rig structure as used in traditional animation pipelines. Our solution allows the animators to edit the retargeted motion easily and intuitively as they can work with the same rig parameters that have been used for keyframe animation. To acheive this, we analyze the correspondence between the source motion space and the target rig-space, followed by performing non-linear optimization for the motion retargeting to target rig-space. We observed the general workflow practiced by animators and apply this process to the optimization step.

Reinforcement Learning of Bipedal Walking with Musculoskeletal Models and Reference Motions (근골격 모델과 참조 모션을 이용한 이족보행 강화학습)

  • Jiwoong Jeon;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • In this paper, we introduce a method to obtain high-quality results at a low cost for simulating musculoskeletal characters based on data from the reference motion through motion capture on two-legged walking through reinforcement learning. We reset the motion data of the reference motion to allow the character model to perform, and then train the corresponding motion to be learned through reinforcement learning. We combine motion imitation of the reference model with minimal metabolic energy for the muscles to learn to allow the musculoskeletal model to perform two-legged walking in the desired direction. In this way, the musculoskeletal model can learn at a lower cost than conventional manually designed controllers and perform high-quality bipedal walking.