The high-resolution near-infrared (NIR) spectroscopy can reveal the evidence of the accretion burst (e.g., the broadened absorption features produced by the Keplerian disk motion) although the moment of the outburst was not caught. The embedded protostar IRAS 16316-1540 observed with the Immersion Grating Infrared Spectrograph (IGRINS, $R={\Delta}{\lambda}/{\lambda}{\sim}45000$) shows the broad absorption features in atomic and CO transitions, as seen in FU Orionis objects (FUors), indicative of an outburst event. We examine whether the spectra of IRAS 16316-1540 arise from the rotating inner hot gaseous disk. Using the IGRINS spectral library, we show that the line profiles of IRAS 16316-1540 are more consistent with an M1.5 V template spectrum convolved with a disk rotation profile than the protostellar photosphere absorption features with a high stellar rotation velocity. We also note that the absorption features deviated from the expected line profile of the accretion disk model can be explained by a turbulence motion generated in the disk atmosphere. From previous observations that show the complex environment and the misaligned outflow axes in IRAS 16316-1540, we suggest that an impact of infalling clumpy envelope material against the disk induces the disk precession, causing the accretion burst from the inner disk to the protostar.
Main researching issue in affective computing is to give a machine the ability to recognize the emotion of a person and to react it properly. Efforts in that direction have mainly focused on facial and oral cues to get emotions. Postures have been recently considered as well. This paper aims to discriminate emotions posture by identifying and measuring the saliency of posture features that play a role in affective expression. To do so, affective postures from human subjects are first collected using a motion capture system, then emotional features in posture are described with spatial ones. Through standard statistical techniques, we verified that there is a statistically significant correlation between the emotion intended by the acting subjects, and the emotion perceived by the observers. Discriminant Analysis are used to build affective posture predictive models and to measure the saliency of the proposed set of posture features in discriminating between 6 basic emotional states. The evaluation of proposed features and models are performed using a correlation between actor-observer's postures set. Quantitative experimental results show that proposed set of features discriminates well between emotions, and also that built predictive models perform well.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3782-3796
/
2020
A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.
Recently, in the field of Speech Emotion Recognition (SER), many studies have been conducted to improve accuracy using voice features and modeling. In addition to modeling studies to improve the accuracy of existing voice emotion recognition, various studies using voice features are being conducted. This paper, voice files are separated by time interval in a time series method, focusing on the fact that voice emotions are related to time flow. After voice file separation, we propose a model for classifying emotions of speech data by extracting speech features Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), and mel-frequency cepstrum coefficients (MFCC) and applying them to a recurrent neural network model used for sequential data processing. As proposed method, voice features were extracted from all files using 'librosa' library and applied to neural network models. The experimental method compared and analyzed the performance of models of recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) using the Interactive emotional dyadic motion capture Interactive Emotional Dyadic Motion Capture (IEMOCAP) english dataset.
Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.7
/
pp.78-88
/
1997
A three dimensional-two spatical dimensions plus time-image segmentation is widely used in a very low bit rate image sequence coding because it can solve the region correspondence problem. Mathematical morphology is a very efficient tool for the segmentation because it deals well with geometric features such as size, shape, contrast and connectivity. But if the motion in the image sequence is large in time axis, the conventional 3D morphological segmentation algorithm have difficulty in solving region correspondence problem. To alleviate this problem, we propose the hierarchical image sequence segmentation algorithm that uses the region motion information. Since the motion of a region in previous level affects that in current level uses the previous motion information to increase region correspondence. Simulation result shows improved performance for sequence frames with large motion.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2009.01a
/
pp.714-718
/
2009
3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.309-312
/
2000
In this work, a new algorithm for canceling MRI artifact due to translational motion in image plane is described. In the previous approach, the motions in the x direction and the y direction are estimated simultaneously. By analyzing their features, each x and y directional motion is canceled by different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal. Next, the y directional motion is canceled by using a new constraint condition. This algorithm is shown to be effective by using a phantom image with simulated motion.
Journal of the Institute of Convergence Signal Processing
/
v.1
no.1
/
pp.49-57
/
2000
In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.
This paper describes the algorithm which extracts moving vehicles from sequential images and tracks those vehicles using Kalman filter. This work is composed of a motion segmentation stage which extracts moving objects from sequential images and gets features of objects, and a motion estimation stage which estimates the position and the motion of moving objects using Kalman filter. In the motion estimation stage, applying to affine motion model we divided the Kalman filter into position filter and velocity filter to employ linear Kalman filter. Multi-target tracking requires a data association component that decides which measurement to use for updating the state of which object. We use pattern recognition method to solve this problem.
This paper proposed a human body posture recognition program based on haar-like feature and hand activity detection. Its distinguishing features are the combination of face detection and motion detection. Firstly, the program uses the haar-like feature face detection to receive the location of human face. The haar-like feature is provided with the advantages of speed. It means the less amount of calculation the haar-like feature can exclude a large number of interference, and it can discriminate human face more accurately, and achieve the face position. Then the program uses the frame subtraction to achieve the position of human body motion. This method is provided with good performance of the motion detection. Afterwards, the program recognises the human body motion by calculating the relationship of the face position with the position of human body motion contour. By the test, we know that the recognition rate of this algorithm is more than 92%. The results show that, this algorithm can achieve the result quickly, and guarantee the exactitude of the result.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.