• Title/Summary/Keyword: motion editing

Search Result 62, Processing Time 0.025 seconds

3D Animation Authoring Tool Based On Whole Body IK and Motion Editing

  • Ju, Woo-Suk;Im, Choong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.869-874
    • /
    • 2008
  • The work of creating character motion needs the higher professional technology and sense and the creating work of realistic and natural motion possess the most part of production term. In this paper we introduce the easy and convenient 3D animation authoring tool which makes the motion based on whole-body inverse kinematics and motion editing function. The proposed 3D animation authoring tool uses the forward kinematics using quaternion and whole-body inverse kinematics to determine the rotation and displacement of skeleton. Also, it provides the motion editing function using multi-level B-spline with quasi-interpolant. By using the proposed tool, we can make 3D animation easily and conveniently.

  • PDF

Analysis on the Computational complexities of Motion Editing for Graphic Animation (효율적인 애니메이션을 위한 모션 에디팅 방법의 계산량분석에 관한 연구)

  • Lee, Jihong;Kim, Insik;Kim, Sungsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • Regarding efficient development of computer graphic animations, lots of techniques for editing or transforming existing motion data have been developed. Basically, the motion transformation techniques follow optimization process. To make the animation be natural, almost all the techniques utilize kinematics and dynamics in constructing constraints for the optimization. Since the kinematic and dynamic structures of virtual characters to be animated are very complex, the most time-consuming part is known to the optimization process. In order to suggest some guide lines to engineers involved in the motion transformation, in this paper, we analyze the computational complexities for typical motion transformation in quantitative manner as well as the possibility for parallel computation.

On Natural Motion Editing by a Geometric Mean Filter (기하학적 평균 필터에 의한 자연스러운 움직임 편집)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Recently, motion capture has become one of the most promising technologies in animation. Realistic motion data can be captured by recording the movement of a real actor with an optical or magnetic motion capture system. This paper deals with motion editing by a geometric mean filter. Since the captured motion has some noises that cause a jerky motion, it needs a smoothing process to make it natural. A geometric mean filter is proposed to produce natural motions without jerky motions. Experimental results show that the geometric mean filter can effectively remove noises that cause a jerky motion and it can guarantee the most natural motions among various spatial filters. This method could be applied to the various fields such as real time animation, virtual reality applications, 3D applications, and etc.

  • PDF

On Natural Motion Editing by a Geometric Mean Filter (기하학적 평균 필터에 의한 자연스러운 움직임 편집)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.5 no.2
    • /
    • pp.41-47
    • /
    • 2004
  • Recently, motion capture has become one of the most promising technologies in animation. Realistic motion data can be captured by recording the movement of a real actor with an optical or magnetic motion capture system. This paper deals with motion editing by a geometric mean filter. Since the captured motion has some noises that cause a jerky motion, it needs a smoothing process to make it natural. A geometric mean filter is proposed to produce natural motions without jerky motions. Experimental results show that the geometric mean filter can effectively remove noises that cause a jerky motion and it can guarantee the most natural motions among various spatial filters. This method could be applied to the various fields such as real time animation, virtual reality applications, 3D applications, and etc.

  • PDF

Mesh Editing Using the Motion Feature Vectors (운동 특성 벡터에 기반한 메쉬 에디팅 기법)

  • Lee, Soon-Young;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.214-221
    • /
    • 2008
  • In this paper, we proposed a new mesh editing algorithm based on the motion between two sample meshes. First, the motion vectors are defined as the derivation vector of the corresponding vertices on the sample meshes. Then, the motion feature vectors are extracted between the motion vectors. The motion feature vectors represent the similarity of the vertex motion in a local mesh surface. When a mesh structure is forced by an external motion of anchor vertices, the deformed mesh geometry is obtained by minimizing the cost function with preserving the motion feature vectors. Simulation results demonstrated that the proposed algorithm yields visually pleasing editing results.

Synthesis of Captured Human Motion using Kalman Filter (동작 포착을 이용한 인체 동작의 생성)

  • Jung, SoonKi;Sul, ChangWhan;Wohn, Kwang-Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • This paper deals with character animation using motion capture. The captured motion requires the editing process to smooth the jerky motion by the sensor noise, or to combine several clip-motion libraries. For this purpose, we describe a simple technique for editing the captured motion using the Kalman filter technique. Our formulation allows the generated motion to satisfy the kinematic constraints of the human model. Furthermore, it provides us with a multi-level control mechanism of the motion resolution by changing the uncertainty of the measurement model and the seamless motion transition.

  • PDF

Deforming the Walking Motion with Geometrical Editing (주 관절 경로의 변형을 통한 걷기 동작 수정)

  • Kim, Meejin;Lee, Sukwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This paper proposes a simple deformation method for editing the trajectory of a walking motion with preserving its style. To this end, our method analyzes the trajectory of the root joint into the graph and deforms it by applying the graph Laplace operator. The trajectory of the root joint is presented as a graph with a vertex defined the position and direction at each time frame on the motion dataThe graph transforms the trajectory into the differential coordinate, and if the constraints are set on the trajectory vertex, the solver iterative approaches to the solution. By modifying the root trajectory, we can continuously vary the walking motion, which reduces the cost of capturing a whole motion that is required. After computes the root trajectory, other joints are copied on the root and post-processed as a final motion. At the end of our paper, we show the application that the character continuously walks in a complex environment while satisfying user constraints.

Stereoscopic Contents Production Workflow Based on Nonlinear Editing (비선형 편집기반의 입체영상 제작 흐름에 관한 연구)

  • Kim, Chul-Hyun;Paik, Joon-Ki
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.391-406
    • /
    • 2010
  • Digital cinema based on digital master distribution increases with stereoscopic film as the center. DCI specification V1.0 announced at 2004, it considerates stereoscopic film screening. And now, the Society of Motion Picture and Television Engineers is establishing a task force to define the standards of a stereoscopic contents viewed in the home. Today, most Hollywood commercial stereoscopic film features animation using computer graphic. However, considering film making characteristic, stereoscopic digital cinema is required shooting in real world and editing, screening. This paper presents possibility of stereoscopic examination at NLE in the stereoscopic workflow. And we will propose new stereoscopic digital cinema workflow to apply the stereoscopic examination. Based on experimental results, the 3D ready television using 120Hz has some obstacles for contents editing, but most domestic stereoscopic monitor using circular polarization is possible for successful editing.

A Study on an Inductive Motion Edit Methodology using a Uniform Posture Map (균등 자세 지도를 이용한 귀납적 동작 편집 기법에 관한 연구)

  • 이범로;정진현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.162-171
    • /
    • 2003
  • It is difficult to reuse the captured motion data, because the data has a difficulty in editing it. In this paper, a uniform posture mar (UPM) algorithm, one of unsupervised learning neural network is proposed to edit the captured motion data. Because it needs much less computational cost than other motion editing algorithms, it is adequate to apply in teal-time applications. The UPM algorithm prevents from generating an unreal posture in learning phase. It not only makes more realistic motion curves, but also contributes to making more natural motions. Above of all, it complements the weakness of the existing algorithm where the calculation quantity increases in proportion to increase the number of restricted condition to solve the problems of high order articulated body. In this paper, it is shown two applications as a visible the application instance of UPM algorithm. One is a motion transition editing system, the other is a inductive inverse kinematics system. This method could be applied to produce 3D character animation based on key frame method, 3D game, and virtual reality, etc.

Temporal Transfer of Locomotion Style

  • Kim, Yejin;Kim, Myunggyu;Neff, Michael
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.406-416
    • /
    • 2015
  • Timing plays a key role in expressing the qualitative aspects of a character's motion; that is, conveying emotional state, personality, and character role, all potentially without changing spatial positions. Temporal editing of locomotion style is particularly difficult for a novice animator since observers are not well attuned to the sense of weight and energy displayed through motion timing; and the interface for adjusting timing is far less intuitive to use than that for adjusting pose. In this paper, we propose an editing system that effectively captures the timing variations in an example locomotion set and utilizes them for style transfer from one motion to another via both global and upper-body timing transfers. The global timing transfer focuses on matching the input motion to the body speed of the selected example motion, while the upper-body timing transfer propagates the sense of movement flow - succession - through the torso and arms. Our transfer process is based on key times detected from the example set and transferring the relative changes of angle rotation in the upper body joints from a timing source to an input target motion. We demonstrate that our approach is practical in an interactive application such that a set of short locomotion cycles can be applied to generate a longer sequence with continuously varied timings.