• Title/Summary/Keyword: motion controller

Search Result 1,231, Processing Time 0.025 seconds

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

A Study on the Determination of Linear Model and Linear Control of Biped Robot (이족로봇의 선형모델결정과 제어에 관한 연구)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Design and Field Test of Heading and Depth Control Based on PD Control of Torpedo Type AUV, HW200 (PD제어 기법을 적용한 어뢰형 무인잠수정(HW200)의 선수각 및 심도제어기 설계와 실해역 성능 검증)

  • Park, Sung-kook;Lee, Phil-yeop;Park, Sangwoong;Kwon, Soon T.;Jung, Hunsang;Park, Min-su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.951-957
    • /
    • 2015
  • This Paper considers the heading and depth control problem for an underactuated AUV (Autonomous Underwater Vehicle) HW200. The HW200 is a torpedo-type AUV that is developed from Hanwha corporation R&D Center for military operation such as MCM (Mine Counter Measures). The HW200 controls horizontal and vertical motion with two stern plane and two rudder plane. It is well known that fine control of an AUV motion is not easy because of model uncertainties, highly nonlinear and coupled motions. To overcome those kind of uncertainties, a number of control methods have been presented. In this paper, the motion controllers of the HW200 are designed using PD controller design method based on the linear and perturbed model of the typical 6-DOF equations of an AUV, and confirmed the effectiveness of the controller through simulations and field test.

Optimal Control Design for Automatic Ship Berthing by Using Bow and Stern Thrusters

  • Bui, Van Phuoc;Jeong, Jeong-Soon;Kim, Young-Bok;Kim, Dong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.10-17
    • /
    • 2010
  • Conventionally, because it is difficult to control a ship in shallow water and because attempting to do so creates unwanted environmental effects, maneuvering ships in the harbor area for berthing is usually done with the assistance of tugboats. In this paper, we propose a new method for berthing ships automatically by using bow and stern thrusters. Specifically, a steering motion model of a ship is considered, and parameters in the equation are evaluated by the system identification technique. An optimal controller based on observations was designed from the linearization of the non-linear ship motion in the horizontal plane. It is used to reduce the uncertainty about the ship's dynamics and reduce measurement requirements. The performance of the controller was also analyzed for its robustness relative to avoiding disturbing the environment due to winds, currents, and wave-drift forces. Experiments were conducted to estimate the potential for identifying result and the design of the controller. Specifically, in this paper, the system modeling and tracking control approach are discussed based on a two-degree-of-freedom (2DOF) servo-system design.

A Test Bench with Six Degrees of Freedom of Motion For Development of Small Quadrotor Drones (소형 쿼드로터 드론 개발을 위한 6 자유도 운동 실험 장치)

  • Jin, Jaehyun;Jo, Jin-Hee
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • A new test bench for small multi-rotor type drones has been developed. Six degrees of freedom (DOF) motion is possible due to a ball bushing, wheels, and rotating plates. An FPGA (field programmable gate array) based controller, that supports realtime parallel processing, is used to measure attitude with an accelerometer and a gyro to adjust motor speed. Several tests were performed to check the operational properties of the test bench and the controller. The results show that this test bench is proper for verifying controllers and the control methods of small multi-rotor drones.

Time Domain Passivity Approach for Soft and Deformable Environments (변형 가능한 작업환경에 대한 시간영역 수동제어 방법)

  • Ryu Jee-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.457-463
    • /
    • 2006
  • Recently proposed control scheme for a stable teleoperation, which was based on two-port time-domain passivity approach[21], has been successful for a contact with high stiffness environments. However, we found several conservatisms during the contact with deformable environments and unconstrained motion. The two-port time-domain passivity controller was excessively dissipating energy even though it was not necessary for some cases of an unconstrained motion and soft contact. The main reason of those conservatisms was on the fact that the two-port time-domain passivity controller was activated without considering the amount of energy dissipation at the master and slave manipulators. Especially, the exclusion of the slave manipulator from the two-port was the dominant reason of the conservatisms. In this paper, we consider the amount of energy dissipation at slave manipulator for designing the time-domain passivity observer and controller. The measured interaction force between slave manipulator and environment allow the time-domain passivity observer to include the amount of energy dissipation at the slave manipulator. Based on the modified passivity observer, reference energy following method[24] is applied to satisfy the passivity condition in real-time. The feasibility of the developed methods is proved with experiments. Improved performance is obtained for an interaction with deformable environments and an unconstrained motion.

A Study on the Anti-Swing and Position Controller for the Overhead Cranes (천정크레인의 무진동/위치 제어기 개발에 관한 연구)

  • 윤지섭;강이석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1391-1401
    • /
    • 1995
  • This paper addresses design procedure and testing results of a closed-loop motion control of the cranes. When the object is stopped at the desired position, swinging occurs, and such swinging deteriorates the safety and efficiency of the operation of the crane. Therefore, in this paper, the cascade anti-swing and trolley position feedback controller are designed. Anti-swing controller rapidly eliminates swinging of object and position feedback controller reduces the trolley position error. The performance of this controller is investigated through the computer simulation and experiment. From the results of a series of computer simulations and experiments it can be concluded that proposed controller effectively reduces swinging of the object and trolley position error, which shows this controller can be used as an effective tool for the precise control of overhead cranes.

Precise Digital Tracking Controller for CNC Machine Tools

  • Jeung, Dong-Hyo;Shin, Doo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.58-61
    • /
    • 2001
  • The purpose of this paper is a fuzzy logic controller for XY positioning system. The overall control system consists of three parts, the position controller, the speed controller, the fuzzy logic controller. Precise tracking is achieved by fuzzy logic controller. In practice, such systems contain many uncertainties. Therefore, the XY positioning system must receive and evaluate the motion of all axis for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the existing Cross coupled controllers cannot overcome friction, backlash and parameter variation. So, we propose a fuzzy logic controller of XY positioning system. Experimental results show that the proposed fuzzy logic controller is effective to improve the contouring accuracy of XY positioning system.

  • PDF

Motion Control of Two Welding Mobile Robot with Seam Tracking Sensor

  • Byuong-Oh;Jeon, Yang-Bae;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.30-38
    • /
    • 2003
  • This paper proposed PID controller for torch slider and PD controller for motor right wheel. to control the motion of two-wheeled welding mobile robot with seam tracking sensor touched on welding line. The motion control is realized in the view of keeping constant welding velocity and precise seam tracking even though the target welding line is on straight line or curved line. The position and direction of the body of the mottle robot are controlled by using signal errors between seam tracking sensor and body positioning sensor attached on the end of torch slider and body side of the mobile robot, respectively. In turning motion, the body and the torch slider are controlled by using the kinematic model related with two motions of body turning and torch sliding. The straight locomotion is controlled according to eleven control patterns obtained from displacements between two sensors of the seam tracking sensor and the body positioning sensor. The effectiveness is proven through the experimental results fur lattice type welding line. Through the experimental results, we can see that the position value of the electrode end point and the welding velocity are controlled almost constantly both in straight and turning locomotion.

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.