• Title/Summary/Keyword: motion controller

Search Result 1,229, Processing Time 0.031 seconds

Vibration and Position Tracking Control of a Smart Structure Using SMA Actuators (형상기억합금 작동기를 이용한 스마트 구조물의 진동 및 위치 추적제어)

  • Park, N.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.155-163
    • /
    • 1996
  • This paper presents vibration and position tracking control of a smart structure using shape memory alloy(SMA) actuators. A governing equation of motion of the proposed structure is obtained via Hamilton's princeple. The dynamic characteristics of the SMA actuator are experimentally identified and incorporated with the governing equation to furnish a control system model. Subsequently, a sliding mode controller which has inherent robustness to external disturbances is formulated on the basis of the sliding mode conplacement, and also for the position tracking control of desired trajectories with low-frequency sine and square waves.

  • PDF

Optimal deep machine learning framework for vibration mitigation of seismically-excited uncertain building structures

  • Afshin Bahrami Rad;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.535-549
    • /
    • 2023
  • Deep extreme learning machine (DELM) and multi-verse optimization algorithms (MVO) are hybridized for designing an optimal and adaptive control framework for uncertain buildings. In this approach, first, a robust model predictive control (RMPC) scheme is developed to handle the problem uncertainty. The optimality and adaptivity of the proposed controller are provided by the optimal determination of the tunning weights of the linear programming (LP) cost function for clustered external loads using the MVO. The final control policy is achieved by collecting the clustered data and training them by DELM. The efficiency of the introduced control scheme is demonstrated by the numerical simulation of a ten-story benchmark building subjected to earthquake excitations. The results represent the capability of the proposed framework compared to robust MPC (RMPC), conventional MPC (CMPC), and conventional DELM algorithms in structural motion control.

Electromyography Triggered Training System for Wrist Rehabilitation (근전도 트리거 손목 재활 훈련 시스템 개발)

  • Kim, Younghoon;Le, DuyKhoa;Chee, Youngjoon;Ahn, Kyoungkwan;Hwang, Changho
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.148-155
    • /
    • 2013
  • This study is about the development of the wrist rehabilitation system for the patient who has limited capability of movement after stroke. Electromyography triggered training system (ETTS) can play the role between complete passive training and patient activating training system. Surface EMG was measured on pronator teres muscle and biceps brachii muscle for wrist pronation and supination. Our system detects whether the subject makes muscular effort for pronation or supination or nothing in every 50 ms. When the effort level exceeds the preset percentage of maximal voluntary contraction, the motor rotates according to the direction of the intention of the subject. EMG triggers the motor rotation for the wrist rehabilitation training until the preset angle. To evaluate its performance, the maximum voluntary contraction level was measured for 4 subjects at first. With the audio-visual instruction to rotate the wrist (pronation or supination) the subjects made effort to follow the instruction. After calculating root mean square (RMS) for 50 ms, the controller determines whether there was muscular effort to rotate while holding the motor. When there was an effort to rotate, the controller rotates the motor 0.8 degree. By comparing the RMS values from two channels of EMG, the controller determines the rotational direction. The onset delay is $0.76{\pm}0.24$ s and offset delay is $0.65{\pm}0.22$ s for pronation. For supination the onset delay is $1.24{\pm}0.41$ s and offset delay is $0.77{\pm}0.22$ s. The system responded fast enough to be used for rehabilitation training. The controller perceived the direction of rotation 100% correctly for the pronation and 97.5% correctly for supination. ETTS was developed and the fundamental functions were validated for normal subjects. The clinical validation should be done with patients for real world application. With ETTS, the subjects can train voluntarily over the limitation of the range of motion which increases the effectiveness of the rehabilitation training.

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.

Dynamic Response and Control of Airship with Gust (외란이 작용하는 비행선의 동적 반응 및 제어)

  • Woo, G.A.;Park, I.H.;Oh, S.J.;Cho, K.R.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.69-77
    • /
    • 2002
  • To acquire the dynamic response and design the controller of the airship, the longitudinal motion of the airship with respect to the vertical gust, which is the nonlinear system, was studied. The effects of the apparent mass and moment of the airship delay the dynamic response and the settling time, which are slower than those of conventional airplanes. The current object of the airship is designed to cruise at 500~1000m altitude. At that height, the atmospheric conditions are generally unstable by wind gust. In this paper, it has been studied for the case of vertical gust, since the apparent mass effects are dominant in has been studied for the case of vertical gust, since the apparent mass effects are dominant in that plane. In addition to the study of the dynamic responses of the airship, the controller was designed using the PID-controller. When the gust was applied, airship responses were recovered of equilibrium states. However, it takes too ling time for recovery and the speed of airship is reduced. So, the aim in this paper was to fasten the recovery speed and to get back the cruising velocity. The control parameters were determined from the stability mode analysis, and the control inputs were the thrust and the elevator deflection angle.

A Path-Tracking Control of Optically Guided AGV Using Neurofuzzy Approach (뉴로퍼지방식 광유도식 무인반송차의 경로추종 제어)

  • Im, Il-Seon;Heo, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.723-732
    • /
    • 2001
  • In this paper, the neurofuzzy controller of optically guided AGV is proposed to improve the path-tracking performance A differential steered AGV has front-side and rear-side optical sensors, which can identify the guiding path. Due to the discontinuity of measured data in optical sensors, optically guided AGVs break away easily from the guiding path and path-tracking performance is being degraded. Whenever the On/Off signals in the optical sensors are generated discontinuously, the motion errors can be measured and updated. After sensing, the variation of motion errors can be estimated continuously by the dead reckoning method according to left/right wheel angular velocity. We define the estimated contour error as the sum of the measured contour in the sensing error and the estimated variation of contour error after sensing. The neurofuzzy system consists of incorporating fuzzy controller and neural network. The center and width of fuzzy membership functions are adaptively adjusted by back-propagation learning to minimize th estimated contour error. The proposed control system can be compared with the traditional fuzzy control and decision system in their network structure and learning ability. The proposed control strategy is experience through simulated model to check the performance.

  • PDF

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

Dynamic Position Control Method for the Buffer Unit of a Deepsea Mining System (해석심해자원개발용 버퍼의 동적위치제어기법)

  • Kim, Ki-Hun;Choi, Hang-S.;Hong, Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes a control algorithm for the buffer of a deep-sea mining system, in which the buffer is connected to a long slender pipe and then to a surface ship on one end, and to a collector on sea floor through a flexible hose on the other end. A mathematical modeling is established for designing the controller for buffer thrusters, in which the dynamic response of the long pipe is taken into account based on the mode superposition method. The fluid loading acting on the pipe is estimated by using Morison's formula. For simplicity, the surface ship is assumed to be kept stationary, the reaction from the flexible hose is ignored and only the lateral motions are considered. In order to guide the buffer to react only to the low-frequency motion of the surface vessel, the FIR digital filter is introduced to a PID-based controller It can be shown numerically that the high frequency component of the ship's motion can be effectively filtered out by using the FIR low pass filter.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.