• 제목/요약/키워드: motion analysis

검색결과 7,043건 처리시간 0.036초

Assessment of tunnel damage potential by ground motion using canonical correlation analysis

  • Chen, Changjian;Geng, Ping;Gu, Wenqi;Lu, Zhikai;Ren, Bainan
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.259-269
    • /
    • 2022
  • In this study, we introduce a canonical correlation analysis method to accurately assess the tunnel damage potential of ground motion. The proposed method can retain information relating to the initial variables. A total of 100 ground motion records are used as seismic inputs to analyze the dynamic response of three different profiles of tunnels under deep and shallow burial conditions. Nine commonly used ground motion parameters were selected to form the canonical variables of ground motion parameters (GMPCCA). Five structural dynamic response parameters were selected to form canonical variables of structural dynamic response parameters (DRPCCA). Canonical correlation analysis is used to maximize the correlation coefficients between GMPCCA and DRPCCA to obtain multivariate ground motion parameters that can be used to comprehensively assess the tunnel damage potential. The results indicate that the multivariate ground motion parameters used in this study exhibit good stability, making them suitable for evaluating the tunnel damage potential induced by ground motion. Among the nine selected ground motion parameters, peck ground acceleration (PGA), peck ground velocity (PGV), root-mean-square acceleration (RMSA), and spectral acceleration (Sa) have the highest contribution rates to GMPCCA and DRPCCA and the highest importance in assessing the tunnel damage potential. In contrast to univariate ground motion parameters, multivariate ground motion parameters exhibit a higher correlation with tunnel dynamic response parameters and enable accurate assessment of tunnel damage potential.

차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법 (Real-Time Analysis of Occupant Motion for Vehicle Simulator)

  • 오광석;손권;최경현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

입력지반운동의 공간적 변화를 고려한 교량의 지진응답해석 (Seismic Response Analysis of Bridges Considering Spatial Variation of Input Ground Motion)

  • 최광규;강승우;국승규
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.76-82
    • /
    • 2010
  • This paper presents a seismic response analysis of bridge structures considering the spatial variation of input ground motion. In earthquake analyses of structures, it is usually assumed that the input ground motion is the same at every support. However, this assumption is not justified for long structures like bridges, because observations have shown that the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, an analysis of the foundation-soil interaction must always be performed. To consider the foundation-soil interaction, a soil response analysis is performed first, and after determining the material characteristics of the foundation element obtained by this foundation-soil interaction analysis, the seismic response analysis of a bridge superstructure with equivalent springs and dampers is performed. Finally, the influences of the spatial variation in the input motion, which are affected by different soil characteristics, are considered.

전달함수을 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증 (Proposal and Theoretical Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function)

  • 박천홍;오윤진;이찬홍;홍준희
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.56-63
    • /
    • 2002
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction farce is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geomatric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method(TFM). Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Theoretical Verification on the Motion Error Analysis Method of Hydrostatic Bearing Tables Using a Transfer Function

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.64-70
    • /
    • 2003
  • A new method using a transfer function is introduced in the present paper for analyzing the motion errors of hydrostatic bearing tables. The relationship between film reaction force in a single-side hydrostatic pad and the form error of guide rail is derived at various spatial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called 'the averaging effect of an oil film' quantitively. It is found that the amplitude of film force is reduced as the spatial frequency increases or the relative width of the pocket is reduced. The motion errors of a multi pad type table are estimated using a transfer function, the form errors of a guide rail and the geometric relationship between the pads. The method is named as the Transfer Function Method (TFM). The motion errors calculated by the TFM show good agreement with the motion errors calculated by the Multi Pad Method considering the entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

수면 중 돌연사 감지를 위한 비디오 모션 분석 방법 (Video Motion Analysis for Sudden Death Detection During Sleeping)

  • 이승호
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.603-609
    • /
    • 2018
  • 수면 중 돌연사는 급성 심근경색 등의 이유로 노인 뿐 만 아니라 영아나 20~40대와 같은 비교적 젊은 층에서도 종종 발생하고 있다. 수면 중 돌연사는 미리 예측하기 어려우므로 이를 방지하기 위해서는 수면 모니터링이 필요하다. 본 논문에서는 별도의 센서 부착 없이도 수면 중 돌연사 감지를 할 수 있는 새로운 비디오 분석 방법을 제안한다. 제안하는 비디오 분석 방법에서는 호흡에 의한 미세 움직임을 감지하기 위해 모션 증폭 기법을 적용한다. 모션 증폭을 적용했는데도 프레임 간 차이가 거의 없는 경우, 모션이 존재하지 않아 돌연사 가능성이 있는 것으로 판단한다. 수면 중인 아기를 촬영한 비디오 두 편에 대해 모션 증폭을 적용한 결과, 호흡에 의한 미세 모션을 정확하게 감지하였고, 이는 수면 상태와 돌연사를 구분하는데 유용할 것으로 판단되었다. 제안하는 비디오 분석 방법은 신체에 센서 부착을 필요로 하지 않으므로 아기를 키우는 가정이나 독신 가정에서 편리하게 활용될 수 있을 것이다.

모션그래픽 활용을 중심으로 영화홍보 웹사이트 분석 (Analysis of the Film's Promotional Website - Focus on Motion Graphic)

  • 민장근;한상훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권7호
    • /
    • pp.27-35
    • /
    • 2014
  • 영화와 방송과 같은 영상분야에서 발전한 모션그래픽(Motion Graphic)은 설치미술과 같은 예술분야와 웹사이트등의 인터랙티브 미디어에 이르기까지 폭넓게 사용되고 있다. 특히 영화홍보 웹사이트는 영상 미디어의 특징과 웹사이트의 특징이 혼합된 형태로 모션그래픽 기법이 적극적으로 사용되고 있는 상황이다. 이에 본 연구는 영화홍보 웹사이트의 특징을 분석하고 모션그래픽 분석을 위한 선행 연구를 조사하였다. 이것을 토대로 시각적 요소, 미디어 요소, 모션요소를 주요소로 갖는 웹사이트 분석모델을 제안하였다. 또한 2013년 국내 흥행 영화 중 영화홍보 웹사이트를 선정하여 사례 분석하였고 결과를 토대로 개선점과 발전 방향을 제시해보는데 그 목적이 있다.

토양-러그 상호작용의 특성 해석 (Analysis of Soil-Lug Interaction Characteristics)

  • 조성찬;;이규승;;이용국;최중섭
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.179-186
    • /
    • 2000
  • Interactions between wheel lug surfaces and soil were analyzed through wheel motion. In this paper, lug surfaces such as trailing and leading lug sides and a lug face were analyzed and reported. The interactions between the surfaces and soil were expressed as the horizontal and vertical directions of resultant forces acting on the surfaces. There analysis indicated qualitatively that (1) the trailing lug side is mainly related to produce motion resistance and reaction to dynamic load, (2) the lug face is related to produce not only the motion resistance, the reaction to the dynamic load but also the traction and (3) the leading lug side is mainly related to produce the traction and the reaction to the dynamic load. Experiments were conducted to prove the results of the motion analysis. Normal and tangential forces acting on the surfaces were measured, and the traction, the motion resistance and the reaction to the dynamic load were calculated with wheel rotational and lug design angles. The experiments proved that the results of wheel motion analyses above mentioned as (1), (2) and obtained from the analysis were correct.

  • PDF

Motion Behavior of Platform Supply Vessels Running Under Regular Wave Conditions in RANS Model

  • Park, Huiseung;Jang, Hoyun;Ahn, Namhyun;Yoon, Hyunsik
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.366-372
    • /
    • 2019
  • This study performed a numerical analysis of a 3D unsteady viscous flow in order to investigate ship motion responses running through regular waves of the platform supply vessel. The feasibility of numerical analysis was tested under the three regular wave conditions of the KRISO container ship (KCS) suggested at the 2010 Gothenburg CFD Workshop. The resulting resistance coefficient, heave motion, and pitch angle were compared with the model test of the harmonic analysis. Also, the ship motion response characteristics of the platform supply vessel were performed using the proven method of the KRISO container ship (KCS). The ship motions including the resistance coefficient, heave motion, and pitch angle according to the time series were investigated via harmonic analysis under regular waves condition of ${\lambda}/LPP=1.87$ and $H_S=0.078m$.

Associative Motion Generation for Humanoid Robot Reflecting Human Body Movement

  • Wakabayashi, Akinori;Motomura, Satona;Kato, Shohei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.121-130
    • /
    • 2012
  • This paper proposes an intuitive real-time robot control system using human body movement. Recently, it has been developed that motion generation for humanoid robots with reflecting human body movement, which is measured by a motion capture. However, in the existing studies about robot control system by human body movement, the detailed structure information of a robot, for example, degrees of freedom, the range of motion and forms, must be examined in order to calculate inverse kinematics. In this study, we have proposed Associative Motion Generation as humanoid robot motion generation method which does not need the detailed structure information. The associative motion generation system is composed of two neural networks: nonlinear principal component analysis and Jordan recurrent neural network, and the associative motion is generated with the following three steps. First, the system learns the correspondence relationship between an indication and a motion using training data. Second, associative values are extracted for associating a new motion from an unfamiliar indication using nonlinear principal component analysis. Last, the robot generates a new motion through calculation by Jordan recurrent neural network using the associative values. In this paper, we propose a real-time humanoid robot control system based on Associative Motion Generation, that enables user to control motion intuitively by human body movement. Through the task processing and subjective evaluation experiments, we confirmed the effective usability and affective evaluations of the proposed system.