• Title/Summary/Keyword: mossy fiber sprouting

Search Result 2, Processing Time 0.022 seconds

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

The Role of Bmi1 in Pilocarpine-induced Status Epilepticus in Mice (Pilocarpine에 의해 유도된 생쥐 경련중첩증에서 Bmi1의 역할)

  • Pyeon, Hae-In;Bak, Jia;Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) is a polycomb group protein and a core component of polycomb repressive complex 1. Initial research into Bmi1 has focused on its role in tumorigenesis, and it is generally accepted that it is important for the proliferation and survival of cancer cells. However, more recent studies have revealed that Bmi1 is downregulated in brains with neurodegenerative disease and that it regulates the function of mitochondria and reactive oxygen species levels. In this study, we tested the therapeutic potential of Bmi1 in pilocarpine-induced seizures in Bmi1-knockout mice. Bmi1 expression transiently increased in the hippocampal CA1 and CA3 and the dentate gyrus following pilocarpine-induced status epilepticus (SE). In terms of seizure behavior, SE induction was 43.14% and 53.57% for Bmi1+/+ and Bmi1+/- mice, respectively. However, there was no significant difference in mortality or hippocampal damage between the two groups. Two months after SE induction, the frequency of epileptic seizures in the Bmi1+/- mice was 50% lower than in the control group, although the difference was not statistically significant. In addition, mossy fiber outgrowth in the Bmi1+/- mice was significantly higher than in their wild-type littermates. Taken together, these data indicate that reduced Bmi1 activity increases pilocarpine-induced seizure probability and mossy fiber outgrowth.