• Title/Summary/Keyword: mortar coefficient

Search Result 93, Processing Time 0.022 seconds

Effects of Crushed Coal Bottom Ash on the Properties of Mortar with Various Water-to-binder Ratios (다양한 물-결합재비를 갖는 모르타르의 물성에 대한 파쇄 바텀애시의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.25 no.6
    • /
    • pp.29-40
    • /
    • 2016
  • Effects of crushed coal bottom ash (CBA) with maximum size of 1 mm on the properties of mortar with various water-to-binder ratios (w/b) were evaluated. The present work is a fundamental study to establish a method of mix proportion design for mortar and concrete with CBA. The workability, air contents, and compressive strength of mortar were measured. Efficiency of CBA on the compressive strength at 28 days, which was adopted for mix proportion design, was evaluated based on concepts of 'equivalent strength' in CEN/TR 16637. It was found that the CBA could be contributed as a binder in mortar in some cases, while in other cases act as at aggregates. The efficiency of CBA was influenced by types of CBA and their replacement ratio, and w/b of mortar.

A Study on Watertightness Effect of Waterproofing Admixture Mixed Redispersible (재유화형 분말수지계와 규산질계 혼합형 구체방수재의 방수효과에 관한 연구)

  • 김무한;오상근;배기선;박선규;김용로
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.39-46
    • /
    • 2000
  • This study is to investigate the watertightness properties of waterproofing admixture mixed redispersible polymer and siliceous powder. Series I deals with change in micro-structure of mortar by waterproofing admixture according to the water/cement ratios of 0.5, 0.6, 0.7 and 0.8 Crystal growth in micro-structure was observed through SEM to estimate on the watertightness effect of it. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. The result of this study can be summarized as follows. 1) Fluidity of mortar and concrete was increased by adding waterproofing admixture. 2) From observation through SEM. Crystals grew larger and denser in micro-structure as fiberic crystalization. 3) Waterproofing admixture is good watertightness properties in a level of high water/cement ratios and long limit of time. 4) Crack restoration capacity was appeared and durability was progressed by waterproofing admixture.

Shear Strength and Deformation Behavior of Rock Joint with Roughness (절리면의 거칠기에 따른 암석 절리의 전단강도 및 변형거동에 관한 연구)

  • 이상돈;강준호;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.261-273
    • /
    • 1994
  • Direct shear tests were carried out on the rock joints and artificial discontinuities to investigate the influence of joint roughness on the shear strength and deformation behaviour. Single direct shear testing apparatus used in experiment was designed and manufactured. Its capacity is 200 tons of shear load, 20 tons of normal load and 50$\textrm{cm}^2$ of maximum shear area. Test samples were cement mortar with artificial discontinuity and sandstone with natural joint. Peak shear strength was increased as joint roughness or normal stress was increased, especially, linearly increased with roughness angle in cement mortar. If joint roughness angle was constant at low normal stress, shear strength was not affected by width and height of joint roughness in cement mortar. Peak shear strengths obtained from tests were larger than the values calculated by Barton's equation, and shear stiffness was increased with joint roughness coefficient.

  • PDF

Shrinkage and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물용 라텍스개질 보수용 모르타르의 수축 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • This research was to evaluate the shrinkage and durability performance of latex modified repair mortar and to improve the service lift of the agricultural concrete structures. The shrinkage characteristics of the repair material creates the delamination of repair materials and existing concrete. It may reduce the service life of structures. Also the reduction of durability performance of the repair materials induces the destruction of the repaired concrete structures at early stage. In this research, plastic and drying shrinkage, thermal expansion coefficient for shrinkage properties, durability performance, permeability, repeated freezing and thawing, and resistance of chemical solution test were performed. Test results showed that the latex modified repair mortar indicated the shrinkage amount which the delamination does not happen, and the latex modified repair mortar appeared excellent long-term durability performance which can increase the service life.

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.

Corrosion Prediction of a Cement Mortar-Grouted Rockbolt by Measuring Its Chloride Diffusion Coefficient (시멘트 모르타르계 록볼트 충전재의 염화물 확산계수 측정을 통한 록볼트 부식 예측)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Kim, Dong-Gyou;Park, Hae-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.259-271
    • /
    • 2006
  • This paper aims to predict the corrosion of a fully cement-grouted rockbolt induced by chloride diffusion in a cement mortar grout. From the viewpoint of the long-term durability, a rockbolt may be deteriorated by chemical components, such as sulphate and chloride, in groundwater. Especially, the steel rod of a rockbolt is corroded mainly by chloride. The rockbolt corrosion results in the volume expansion of a rod and then the cracking of a cement grout. In this study, the chloride diffusion coefficient of a cement mortar grout was used to evaluate the possibility of rockbolt corrosion by chloride, and to predict the long-term durability of a rockbolt. The electric acceleration test method was adopted to measure the chloride diffusion coefficient. In addition, a simple pullout testing system was newly proposed to measure the pullout capacity of a rockbolt more easily in a laboratory condition. From the experiments, it was showed that the chloride could diffuse in the cement grout more easily than in ordinary concrete materials. As a result, it was considered that a rockbolt might be easily corroded in a short term by the diffusion of chemical components with high concentration, although it was fully grouted.

Deformation Behavior Investigation of Materials by Debonding Failure in Adhesion and Repairing-strengthening Methods of RC Construction (RC구조물 접착 보수·보강 공법의 박리와 연관한 재료의 변형 거동 분석)

  • Han, Cheon-Goo;Byun, Hang-Yong;Park, Yong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.89-98
    • /
    • 2007
  • This study investigates the deformation behavior, related to debonding failure, of adhesion and repairing-strengthening materials of RC construction. A strain-stress curve shows that when the stress of specimens reached the highest and then fails, the strain value of cement mortar is $2.0{\times}10^{-3}$, while concrete was indicated at around $1.3{\times}10^{-3}$, epoxy resins are $0.8{\times}10^{-3}$, polymer mortar is $2.5{\times}10^{-3}$, steel plate is $2.5{\times}10^{-3}$, and carbon bar was $9.1{\times}10^{-3}$, respectively. For a thermal expansion coefficient with temperature variation, those basis materials, cement mortar and concrete, exhibited around $10{\mu}{\varepsilon}/{^{\circ}C}$, but adhesive materials, such as epoxy resins and polymer mortar, were $41{\sim}54{\mu}{\varepsilon}/{^{\circ}C}$ and $-0.5{\sim}0.7{\mu}{\varepsilon}/{^{\circ}C}$, respectively. In the case of steel plate is similar to basic materials but carbon fiber is indicates at $-1.7{\mu}{\varepsilon}/{^{\circ}C}$, which is the lowest value. Especially, between basic and adhesive materials, the thermal expansion coefficient was highly different. Although the coefficient depends on the type of epoxy resins, it is clear that the epoxy resins are susceptible to be debonded in nature, when the difference of environmental temperature varies more than $20{\sim}35{^{\circ}C}$.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Compression Behavior of Form Block Walls Corresponding to the Strength of Block and Grout Concrete

  • Seo, S.Y.;Jeon, S.M.;Kim, K.T.;Kuroki, M.;Kikuchi, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.21-33
    • /
    • 2015
  • This study aimed to present a reinforced concrete block system that reduces the flange thickness of the existing form block used in new buildings and optimizes the web form, and can thus capable of being used in the seismic retrofit of new and existing buildings. By conducting a compression test and finite element analysis based on the block and grouted concrete strength, it attempted to determine the compression capacity of the form block that can be used in new construction and seismic retrofit. As a result, the comparison of the strength equation from Architectural Institute of Japan to the prism compression test showed that the mortar coefficient of 0.55 was suitable instead of 0.75 recommended in the equation. The stress-strain relation of the block was proposed as a bi-linear model based on the compression test result of the single form block. Using the proposed model, finite element analysis was conducted on the prism specimens, and it was shown that the proposed model predicted the compression behavior of the form block appropriately.

Measurement of Optical Properties of Nano-Cement Using THz Electromagnetic Waves (THz 전자기파를 이용한 나노시멘트 광학물성 측정)

  • Kim, Heonyoung;Kang, Donghoon;Oh, Seung Jae;Joo, Chulmin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.363-369
    • /
    • 2016
  • Enhancing mechanical strength of concrete has been fascinated using carbon-based nanomaterials such as CNT and graphene. The key to improving strength is a dispersion of nanomaterials. A novel method is required to investigate the dispersion inner concrete nondestructively. In this study, the optical optical properties such as refractive index and absorption coefficient are measured in nano-cement mortar specimens containing MWCNT and GO using THz electro-magnetic waves. From the results, the properties of nano-cement mortar are confirmed to be 1.0% to 2.5% higher in refractive index, and -14% to 28% higher in absorption coefficient than those of cement mortar at the average values. Using these characteristics, visualizing the dispersion of nano-concrete structures seems possible in future.