• 제목/요약/키워드: morphology controlling

검색결과 184건 처리시간 0.028초

Isolation and Identification of Burkholderia pyrrocinia CH-67 to Control Tomato Leaf Mold and Damping-off on Crisphead Lettuce and Tomato

  • Lee, Kwang-Youll;Kong, Hyun-Gi;Choi, Ki-Hyuck;Lee, Seon-Woo;Moon, Byung-Ju
    • The Plant Pathology Journal
    • /
    • 제27권1호
    • /
    • pp.59-67
    • /
    • 2011
  • A bacterial strain CH-67 which exhibits antagonism towards several plant pathogenic fungi such as Botrytis cinerea, Fulvia fulva, Rhizoctonia solani, Sclerotinia sclerotiorum, Colletotrichum sp. and Phytophthora sp. was isolated from forest soil by a chitin-baiting method. This strain was identified as Burkholderia cepacia complex (Bcc) and belonging to genomovar IX (Burkholderia pyrrocinia) by colony morphology, biochemical traits and molecular method like 16S rRNA and recA gene analysis. This strain was used to develop a bio-fungicide for the control of tomato leaf mold caused by Fulvia fulva. Various formulations of B. pyrrocinia CH-67 were prepared using fermentation cultures of the bacterium in rice oil medium. The result of pot experiments led to selection of the wettable powder formulation CH67-C containing modified starch as the best formulation for the control of tomato leaf mold. CH67-C, at 100-fold dilution, showed a control value of 85% against tomato leaf mold. Its disease control efficacy was not significantly different from that of the chemical fungicide triflumidazole. B. pyrrocinia CH-67 was also effective in controlling damping-off caused by Rhizoctonia solani PY-1 in crisphead lettuce and tomato plants. CH67-C formulation was recognized as a cell-free formulation since B. pyrrocinia CH-67 was all lethal during formulation process. This study provides an effective biocontrol formulation of biofungicide using B. pyrrocinia CH-67 to control tomato leaf mold and damping-off crisphead lettuce and tomato.

TiO2 nanotube plate를 이용한 전기적광촉매시스템의 염료폐수 처리 가능성 연구 (A Study on the Possibility of Dye Wastewater Treatment of Electrical Photocatalytic System Using TiO2 nanotube plate)

  • 이용호;쑨밍하오;박대원
    • 한국물환경학회지
    • /
    • 제35권5호
    • /
    • pp.418-424
    • /
    • 2019
  • In this study, $TiO_2$ nanotubes with different morphologies were prepared in the electrolyte consisting of ethylene glycol, ammonium fluoride($NH_4F$), and deionized water($H_2O$) by controlling the voltage and time in the anodization method. Thicknesses and pore sizes of these $TiO_2$ nanotubes were measured to interpret the relationship between anodization conditions and $TiO_2$ nanotube morphologies. Element contents in the $TiO_2$ nanotubes were detected for further analysis of $TiO_2$ nanotube characteristics. Photoelectrolyticdecolorization efficiencies of the $TiO_2$ nanotube plates with various morphologies were tested to clarify the morphology that a highly active $TiO_2$ nanotube plate should have. Influences of applied voltage in photoelectrolysis processes and sodium sulfate($Na_2SO_4$) concentration in wastewater on the decolorization efficiency were also studied. To save the equipment investment cost in photoelectrolysis methods, a two-photoelectrode system that uses the $TiO_2$ nanotube plates as photoanode and photocathode instead of adding other counter electrodes was studied. Compared with single-photoelectrode system that uses the $TiO_2$ nanotube plate as photoanode and titanium plate as cathode on the view of the treatment of dye wastewater containing different amounts of salt. As a result, a considerably suitable voltage was strictly needed for enhancing the photoelectrolyticdecolorization effect of the two-photoelectrode system but if salts exist in wastewater, an excellent increase in the decolorization efficiency can be obtained.

에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구 (Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films)

  • 김익수;구상모;박철환;신원호;이동원;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Transverse variability of flow and sediment transport in estuaries with an estuarine dam

  • Steven Figueroa;Minwoo Son
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.125-125
    • /
    • 2023
  • Estuarine dams are dams constructed in estuaries for reasons such as securing freshwater resources, controlling water levels, and hydroelectric power generation. These estuarine dams alter the flow of freshwater to the coastal ocean and the tidal properties of the estuaries which has implications for the estuaries' circulation and sediment transport. A previous study has analyzed the effect of estuarine dams on 1D (along-channel) circulation and sediment transport. However, the effect of estuarine dams on the transverse variability of along-channel and across-channel circulation and sediment transport has not been studied and is not known. In this study, a coupled hydrodynamic-sediment dynamic numerical model (COAWST) was used to analyze the transverse variability of along-channel and across-channel flow and sediment transport in estuaries with estuarine dams. The estuarine dam was found to change the 3D structure of circulation and sediment transport, and the result was found to depend on the estuarine type (i.e., strongly stratified (SS) or well-mixed (WM) estuary). The SS estuary had inflow in the channel and outflow over the shoals, consistent with estuarine circulation. Longer discharge interval reduced the estuarine circulation. The WM estuary had inflow over the shoals and outflow in the channel, consistent with tide-induced circulation. As the estuarine dam was located nearer to the estuary mouth, the tide-induced circulation was reduced and replaced with estuarine circulation. The lateral circualtion was the greatest in the tide-dominated estuaries. It was reduced and changed direction due to differential advection change as the dam was located nearer the mouth. Overall, the WM estuary transverse flow structure changed the most. Lateral sediment flux was important in all estuaries, particularly for transporting sediments to the tidal flats.

  • PDF

황화납/산화아연 나노선을 이용한 양자점 감응형 태양전지 (Quantum Dot Sensitized Solar Cell Using PbS/ZnO Nanowires)

  • 김우석;용기중
    • 청정기술
    • /
    • 제16권4호
    • /
    • pp.292-296
    • /
    • 2010
  • 황화납(PbS)을 감응물질로 하는 양자점 감응형 태양전지를 제작하고 효율을 측정해 보았다. 기판에 산화아연(ZnO) 나노선을 기른 후 SILAR(Successive ionic layer adsorption and reaction)법으로 PbS 양자점을 합성하고 이를 주사전자현미경(SEM), X-선 회절(XRD)을 통해 확인하였다. SILAR를 통해서 형성된 나노이종구조는 PbS 나노입자들이 ZnO 나노선 위에 균일하게 성장한 것을 확인할 수 있었다. 본 실험에서 PbS을 이용한 양자점 감응형 태양전지의 최고 효율은 one sun에서 0.075%로 나타났으며, 이는 기존의 다른 감응 물질에 비해 비교적 낮은 효율을 나타내었다. 이러한 요인으로는 i) ZnO와 PbS의 밴드갭 배열이 Type-I 형을 이룰 수 있는 가능성, ii) 다양한 크기의 밴드갭을 가지는 PbS에 의한 전자이동 방해 효과, iii) 전해질에 의한 PbS의 안정성 저하 등의 이유를 생각해 볼 수 있으며, 이를 해결하기 위해서는 PbS의 크기분포 조절과 새로운 전해질에 대한 연구가 향후 필요할 것으로 생각된다.

Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말의 입성장 거동에 미치는 Salt의 영향 (Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method)

  • 김보연;이윤주;김수룡;권우택;신동근;김영희;최덕균
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.603-608
    • /
    • 2015
  • 일반적으로 결정은 계면에 따라 그 성장속도가 다르기 때문에 계면의 성장을 제어함으로써 다양한 형태의 결정입자를 얻는 것이 가능하다. 알루미나의 경우 산업적 이용범위가 다양해지고 있어, 다양한 크기 또는 종횡비가 다른 다양한 형상의 분말이 요구되기도 한다. 용융염(molten-salt)을 이용하여 세라믹 입자를 성장시킬 경우, $800{\sim}900^{\circ}C$ 이상에서 용융되는 salt의 조건을 변화함으로써 세라믹 입자의 결정 성장 방향을 제어할 수 있는데, 알루미나의 경우 주로 판상형으로 입자가 성장하게 되며, 이때 salt의 ionic strength에 따라 판상형으로 성장하는 결정의 성장 속도를 제어하는 것이 가능하다. 본 연구에서는 NaCl, $Na_2SO_4$, $Na_3PO_4$를 이용하여 ionic strength가 다른 다양한 salt 조건에서 알루미나 입자를 성장시켰으며, 이들이 알루미나 결정 성장에 미치는 영향과 온도, 농도 변화에 따라 형성되는 알루미나의 크기 및 형상의 변화에 관하여 연구하였다.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

AAO를 사용한 고분자전해질 연료전지의 공기극 촉매층 구조 제어 (Morphology Controlled Cathode Catalyst Layer with AAO Template in Polymer Electrolyte Membrane Fuel Cells)

  • 조윤환;조용훈;정남기;안민제;강윤식;정동영;임주완;성영은
    • 전기화학회지
    • /
    • 제15권2호
    • /
    • pp.109-114
    • /
    • 2012
  • 고분자전해질 연료전지 (PEMFC)의 공기극을 양극산화 알루미늄 (AAO) 템플레이트를 이용하여 제조하고 촉매층의 구조적 특성을 주사현미경 (SEM) 측정과 BET (Brunauer-Emmett-Teller) 분석을 통해 알아보았다. SEM 측정을 통해 일정한 크기와 모양의 Pt nanowire 가 규칙적으로 형성된 것을 확인할 수 있었다. BET 분석을 통해 AAO 템플레이트로 인하여 20-100 nm 크기의 기공 분포가 증가한 것을 확인하였다. 단위전지 성능평가와 임피던스 측정을 통하여 막-전극접합체 (MEA)의 전기화학적 특성을 분석하였다. 그 결과, AAO 템플레이트를 이용하여 제조한 MEA는 촉매층의 구조 개선으로 인하여 물질 전달 저항을 감소시킬 수 있었으며, 25%의 단위전지 성능이 향상되었다.

송사리수정란을 이용한 납의 내분비계장애에 관한 연구 (Endocrine Disrupting Effects of Lead on the Ontogeny of Oryzias Latipes)

  • 박광식;최필선;이상협;이철우;류지성;최성수;류홍일;최덕일
    • Toxicological Research
    • /
    • 제14권3호
    • /
    • pp.379-384
    • /
    • 1998
  • Endocrine disruptor is an exogenous substance that changes endocrine function and causes adverse effects at the level of the organism, its progeny, and/or (sub)populations of the organisms. Purported adverse effects are cancers, declines in reproductive health, developmental learning disabilities in humans, and declining populations, altered morphology, physiology or behavior in wildlife. In these days, expert groups on chemicals in IPCS, IFCS and OECD are intensively discussing the identification of endocrine disruptors and the proper management of those chemicals. In this study, we screened the endocrine disrupting effects of lead using fertilized eggs of Oryzias latipes. In brief, the eggs were exposed to lead with different concentrations at Ringer's solution, and the mortality, the incidence of deformation, the body movement and the hatching success were determined after incubation. The histological analysis of normal and deformed larvae was also carried out. Compared to control, the mortality and the heart rate of eggs and/or larvae increased, but the hatching success and the tail movement decreased. The morphological observation showed the asymmetrical deformation of larvae and the distortion of spinal cord. The absorption of the liquid in yolk sac was hindered. The adverse effects of lead in the ontogeny of fertilized eggs of Oryzias latipes seemed to be stronger in pH5.6 than in pH7.5 solution. In summary, lead showed adverse effects on the ontogeny of fish fertilized eggs plays critical role in regulating biological systems and controlling developmental processes as an endocrine disruptor.

  • PDF

상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과 (Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion)

  • 조유송;김영경;구자경;박종순
    • 멤브레인
    • /
    • 제24권2호
    • /
    • pp.113-122
    • /
    • 2014
  • 상전이 과정을 통하여 poly(L-lactic acid) 재질의 다공성 스캐폴드 막을 제조하였다. 비용매로는 에탄올을 사용하였고, 용매로서 chloroform, dichloromethane 및 1,4-dioxane을 사용하였으며, 제조한 스캐폴드 막의 모폴로지와 기계적 강도 및 물질전달 특성은 각각 SEM, 인장강도실험 및 당 확산실험을 통하여 측정, 평가하였다. chloroform을 용매로 사용한 스캐폴드 막과 dichloromethane을 용매로 사용한 스캐폴드 막은 서로 유사한 모폴로지와 기계적 특성을 보였다. 이들 스캐폴드 막은 공극 직경 $3-10{\mu}m$의 다공성 스펀지 구조를 보였으며, 범위 50-80%의 공극률을 보였다. 1,4-dioxane 용매의 용액으로부터 제조된 스캐폴드 막은 공극률 80% 이상의 나노섬유 형태를 보였다. 캐스팅 용액 내의 고분자 함량이 4% 이하로 낮추었을 때에는 나노섬유 구조의 바탕에 수십 ${/mu}m$의 거대 공극이 존재하는 높은 공극률(90%)을 갖는 스캐폴드 막이 얻어졌다. 이러한 결과를 통하여 스캐폴드 막의 구조에 대하여 용매는 중요한 효과를 미치며, 상전이 과정에서 용매선택과 캐스팅 용액의 농도 조절을 통하여 다양한 구조의 스캐폴드 막을 제조할 수 있다는 결론을 도출하였다.