• Title/Summary/Keyword: morphological responses

Search Result 174, Processing Time 0.046 seconds

Cellular Responses of the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 to Explosive 2,4,6-Trinitrotoluene (TNT) (폭약 2,4,6-Trinitrotoluene에 노출된 분해세균 Stenotrophomonas sp. OK-5의 세포반응)

  • 장효원;송승열;김승일;강형일;오계헌*
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.247-253
    • /
    • 2002
  • The cellular responses of TNT-degrading bacterium, Stenotrophomonas sp. OK-5 to explosive 2,4,6-trini-trotoluene (TNT) as an environmental contaminant were examined. Survival of the strain OK-5 with time in the presence of different concentrations of TNT under sublethal conditions was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium. Total cellular fatty acids analysis showed that strain OK-5 produced or disappeared several different kinds of lipids when grown on TNT media than when grown on TSA. Under scanning electron microscope, the cells treated with 0.5 mM TNT for 12 hrs showed irregular rod shapes with wrinkled surfaces. Analyses of SDS-PAGE and Western blot using anti-DnaK and anti-GroEL revealed that several stress shock proteins including 70 kDa DnaK and 60 kDa GroEL in strain OK-5 were newly synthesized at different TNT concentrations in exponentially growing cultures. 2-D PAGE of soluble protein fractions from the culture of OK-5 exposed to TNT demonstrated that approximately 300 spots were observed on the silver stained gel ranging from pH 3 to pH 10. Among them, 10 spots significantly induced and expressed in response to TNT were selected and analyzed. As the result of internal amino acid sequencing with ESI-Q TOF, two proteins, spot #1 and spot #10 were assigned the DnaK protein XF2340 of Xylella fastidiosa and stress-induced protein of Mesorhizobium loti, respectively.

Anti-tuberculosis effects of frankincense through immune responses of Mycobacterium tuberculosis-infected macrophages (결핵균이 감염된 대식세포의 면역반응을 통한 유향(Frankincense)의 항결핵효과)

  • Son, Eun-Soon;Lee, Sun Kyoung;Cho, Sang-Nae;Park, Hae-Ryoung;Lee, Jong Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.756-760
    • /
    • 2021
  • Frankincense has been used as a traditional medicine for treating rheumatoid arthritis, dermatitis, and muscle pain. In this study, the anti-tuberculosis effects of Frankincense were evaluated in immune responses of macrophages. Frankincense methanol extract was not cytotoxic to the host. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay using human macrophage (THP-1) cells did not show cytotoxic effects or morphological changes with treatments of 31.3, 62.5, and 125 ㎍/mL Frankincense methanol extract (FRM). Inhibitory effects of Frankincense methanol extract on the growth of Mycobacterium tuberculosis in human macrophages were investigated. The immune response was measured by monitoring the levels of TNF-α and IL-1β in THP-1 cells with or without M. tuberculosis infection under Frankincense methanol extract treatment. Inflammatory cytokine levels and M. tuberculosis numbers were reduced in THP-1 cells treated with Frankincense methanol extract. Therefore, Frankincense methanol extract could be used as a potential anti-tuberculosis agent.

Integrative analysis of cellular responses of Pseudomonas sp. HK-6 to explosive RDX using its xenA knockout mutant (Pseudomonas sp. HK-6의 xenA 돌연변이체를 이용하여 RDX 폭약에 노출된 세포반응들의 통합적 분석)

  • Lee, Bheong-Uk;Choi, Moon-Seop;Seok, Ji-Won;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.343-353
    • /
    • 2018
  • Our previous research demonstrated the essential role of the xenB gene in stress response to RDX by using Pseudomonas sp. HK-6 xenB knockout. We have extended this work to examine the cellular responses and altered proteomic profiles of the HK-6 xenA knockout mutant under RDX stress. The xenA mutant degraded RDX about 2-fold more slowly and its growth and survival rates were several-fold lower than the wild-type HK-6 strain. SEM revealed more severe morphological damages on the surface of the xenA mutant cells under RDX stress. The wild-type cells expressed proportionally-increased two stress shock proteins, DnaK and GroEL from the initial incubation time point or the relatively low RDX concentrations, but slightly less expressed at prolonged incubation period or higher RDX. However the xenA mutant did not produced DnaK and GroEL as RDX concentrations were gradually increased. The wild-type cells well maintained transcription levels of dnaA and groEL under increased RDX stress while those in the xenA mutant were decreased and eventually disappeared. The altered proteome profiles of xenA mutant cells under RDX stress also observed so that the 27 down-regulated plus the 3 up-regulated expression proteins were detected in 2-DE PAGE. These all results indicated that the intact xenA gene is necessary for maintaining cell integrity under the xenobiotic stress as well as performing an efficient RDX degradation process.

Ultraviolet Radiation-Induced Apoptosis is Inversely Correlated with the Expression Level of Poly(ADP-ribose) Polymerase

  • Oh, Kyu Seon;Lee, Dong Wook;Chang, Jeong Hyun;Moon, Yong Suk;Um, Kyung ll
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • The present study was conducted to elucidate whether the expression level of poly(ADP-ribose) polymerase (PARP) is related to the ultraviolet radiation (UV)-induced apoptosis. After treatment of the mammalian cell lines HeLa S3 and Chinese hamster ovary (CHO) with 50 J/m2 UV, induction of apoptosis was determined by several means during 24 h post-incubation. Incidence of apoptosis was much lower in CHO than HeLa S3 cells based on the percentage of apoptotic cells in terms of morphological changes in nucleus or direct counting of viable cells and qualitative or quantitative DNA fragmentation. Interestingly, when the expression level of PARP was measured by western blotting, the amounts of PARP that was retained at each time point inversely correlated with the incidences of apoptosis in these cells. Concomitant with generation of the 85 kDa fragment, 116 kDa PARP disappeared in HeLa S3 within 6 h after UV treatment, whereas a fair amounts of 116 kDa band was still retained in CHO cells at 36 h post-incubation. This inverse relationship was also observed in the adaptive response system, in which cells weve treated with a high dose of UV after pretreatment with a low dose. As expected, typical adaptive responses appeared in CHO cells but not in HeLa cells, showing greater cell viability and lesser DNA fragmentation. During the adaptive response in CHO cells, PARP was expressed at much higher level compared to the single, high dose-treated cells. Interestingly, even though PARP was induced at 6 h post-incubation In both cell types, its expression was more prominent in CHO cells. Thus, our data indicate that the retained level of intact PARP against UV damage inversely correlates with incidence of apoptosis in mammalian cells, and also suggest that a machinery to protect the PARP degradation against UV damage exists in CHO but not in HeLa S3 cells.

  • PDF

Using Chlorophyll Fluorescence and Vegetation Indices to Predict the Timing of Nitrogen Demand in Pentas lanceolata

  • Wu, Chun-Wei;Lin, Kuan-Hung;Lee, Ming-Chih;Peng, Yung-Liang;Chou, Ting-Yi;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.845-853
    • /
    • 2015
  • The objective of this study was to predict the timing of nitrogen (N) demand through analyzing chlorophyll fluorescence (ChlF), soil-plant analysis development (SPAD), and normalized difference vegetation index (NDVI), which are positively correlated with foliar N concentration in star cluster (Pentas lanceolata). The plants were grown in potting soil under optimal conditions for 30 d, followed by weekly irrigation with five concentrations (0, 4, 8, 16, and 24 mM) of N for an additional 30 d. These five N application levels corresponded to leaf N concentrations of 2.62, 3.48, 4.00, 4.23, and 4.69%, respectively. We measured 13 morphological and physiological parameters, as well as the responses of these parameters to various N-fertilizer treatments. The general increases in Dickson's quality index (DQI), above-ground dry weight (DW), total DW, flowering rate, ${\Delta}F/Fm$', and qP in response to treatment with 0 to 8 mM N were similar to those of SPAD, NDVI, and Fv/Fm. Consistent and strong correlations ($R^2$= 0.60 to 0.85) were observed between leaf N concentration (%) and SPAD, NDVI, ${\Delta}F/Fm$', and above-ground DW. Validation of leaf S PAD, NDVI, and ${\Delta}F/Fm$' revealed that these vegetation indices are accurate predictors of leaf N concentration that can be used for non-destructive estimation of the proper timing for N-solution irrigation of P. lanceolata. Moreover, irrigation with 8 mM N-fertilizer i s recommended w hen leaf N concentration, SPAD, NVDI, and ${\Delta}F/Fm$' ratios are reduced from their saturation values of 4.00, 50.68, 0.64, and 0.137%, respectively.

The Expression of DNA Polymerase-$\beta$ and DNA Damage in Jurkat Cells Exposed to Hydrogen Peroxide under Hyperbaric Pressure

  • Sul, Dong-Geun;Oh, Sang-Nam;Lee, Eun-Il
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Long term exposure of Jurkat cells to 2 ATA pressure resulted in the inhibition of cell growth. Under a 2 ATA pressure, the morphological changes in the cells were visualized by electron microscopy. The cells exhibited significant inhibitory responses after three passages. However, short-term exposure study was carried out, 2 ATA pressure may have beneficial effects. The Jurkat cells were exposed to $H_2O_2$ (25 and $50{\mu}M$) in order to induce DNA damage, and then incubated under at either normal pressure or 2 ATA for 1 or 2 hours in order to recover the DNA damage. The extent of DNA damage was determined via Comet assay. More recovery from DNA damage was observed at 2 ATA than at normal pressure. The activity of the DNA repair enzymes, DNA polymerase-$\beta$, was also evaluated at both normal pressure and 2 ATA. The activity of DNA polymerase-$\beta$ was observed to have increased significantly at the 2 ATA than at normal pressure. In conclusion, the effects of hyperbaric pressure from 1 ATA to 2 ATA on biochemical systems can be either beneficial or harmful. Long term exposure to hyperbaric pressure clearly inhibited cell proliferation and caused genotoxic effects, but short-term exposure to hyperbaric pressure proved to be beneficial in terms of bolstering the DNA repair system. The results of the present study have clinical therapeutic application, and might prove to be an useful tool in the study of genotoxicity in the future.

Initial adhesion of bone marrow stromal cells to various bone graft substitutes

  • Jo, Young-Jae;Kim, Kyoung-Hwa;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Chung, Chong-Pyoung;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • Purpose: The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro. Methods: Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with $\beta$-tricalcium phosphate (TCP), and pure $\beta$-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7. Results: The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface. Conclusions: Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment.

Physical Property and Morphology Observation of HepG2 Cells by Various Concentration of Paraquat (파라쿼트 농도에 따른 HepG2 세포의 물리적 특성 변화와 실시간 모폴로지 관찰)

  • Lee, Dong-Yun;Kang, Hyen-Wook;Muramatsu, Hiroshi;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1232_1233
    • /
    • 2009
  • Paraquat is well-known to cause hepatotoxic responses in human and other mammal species. In solution, it forms free radicals and charge-transfer complex of which formation plays an important role in determination of its biological activity in the presence of various anions. The HepG2 cells were cultured onto a quartz crystal sensor which is possible to detect the density and a viscosity changes using the resonance frequency (F) and the resonance resistance (R). The plot of F-R diagram is able to explain the rheological change of cells onto the surface of the quartz crystal sensor. In this paper, we investigated the physical properties of the HepG2 cells cultured onto a ITO electrode of the quartz crystal sensor according to the paraquat injection at various concentrations (100 mM, 10 mM, 1 mM). We also observed the morphological changes with a micro CCD camera, simultaneously. The HepG2 cells were cultured onto the ITO electrode surface of the quartz crystal modified a collagen film in $CO_2$ incubator. After the paraquat injection, we observed the changes of the morphologies by the micro CCD camera depending on time and analyzed the physical changes of cells on the electrode surface of quartz crystal using F-R diagram. From all results, we proved the effect of paraquat at various concentrations which is led to an apoptosis such as weakening and death of the cells by oxidation and reduction reaction that were produced the superoxide anions and other free radicals.

  • PDF

Growth and Histological Characteristics of Barley (Hordium vulgare L.) Seedling to NaCl Stress (NaCl Stress에 따른 보리 유묘의 생육특성 및 세포학적 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo;Lee, Sok-Young;Park, Ki-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.335-340
    • /
    • 1998
  • This study was conducted to determine the morphological responses of barley seedlings to NaCl stress and to investigate histological changes of cells with transmission electron microscope(TEM) after NaCl stress. Plant height and root length of 10-day old barley seedlings with NaCl stress were reduced and inhibition level was found to be more severe in the plant height than in the root length. The leaf length, leaf width and leaf area were shorter as well with NaCl stress than without NaCl stress. However, there was no difference in the number of roots between NaCl treatments. The weight of dry matter decreased at higher NaCl concentrations, especially at 100mM NaCl. The water content of shoots tend to decrease at higher NaCl concentrations, but there was no difference in the water content of roots, The reduced sugar content was greatly increase than starch. Cellulose content was higher in NaCl stressed-plant than control, and tended to decreased at higher NaCl concentrations. Lignin content also decreased NaCl stressed-plant but there was no tendency at NaCl stress concentrations. Electric conductivity of cell sap with seedlings was high with NaCl stressed-plant. Amount of cell sap gradually increased with time in the roots than in the shoots, The grana of chloroplasts was changed by 150mM NaCl concentration. The christe of mitochondria in root meristematic sells ruined in structure and cell wall of leaf and root was also ruined by NaCl stress.

  • PDF

Inhibitory Effects of Quinizarin Isolated from Cassia tora Seeds Against Human Intestinal Bacteria and Aflatoxin $B_1$ Biotransformation

  • Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.529-536
    • /
    • 2003
  • The growth-inhibitory activity of Cassia tora seed-derived materials against seven intestinal bacteria was examined in vitro, and compared with that of anthraquinone, anthraflavine, anthrarufin, and 1-hydroxyanthraquinone. The active constituent of C. tore seeds was characterized as quinizarin, using various spectroscopic analyses. The growth responses varied depending on the compound, dose, and bacterial strain tested. At 1 mg/disk, quinizarin exhibited a strong inhibition of Clostridium perfringens and moderate inhibition of Staphylococcus aureus without any adverse effects on the growth of Bifidobacterium adolescentis, B. bifidum, B. longum, and Lactobacillus casei. Furthermore, the isolate at 0.1 mg/disk showed moderate and no activity against C. perfringens and S. aureus. The structure-activity relationship revealed that anthrarufin, anthraflavine, and quinizarin moderately inhibited the growth of S. aureus. However. anthraquinone and 1-hydroxyanthraquinone did not inhibit the human intestinal bacteria tested. As for the morphological effect of 1 mg/disk quinizarin, most strains of C. perfringens were damaged and disappeared, indicating that the strong activity of quinizarin was morphologically exhibited against C. perfringens. The inhibitory effect on aflatoxin $B_1$ biotransformation by anthraquinones revealed that anthrarufin ($IC_50,\;11.49\mu\textrm{M}$) anthraflavine ($IC_50,\;26.94\mu\textrm{M}$), and quinizarin ($IC_50,\;4.12\mu\textrm{M}$), were potent inhibitors of aflatoxin ${B_1}-8,9-epoxide$ formation. However, anthraquinone and 1-hydroxyanthraquinone did not inhibit the mouse liver microsomal sample to convert aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$. These results indicate that the two hydroxyl groups on A ring of anthraquinones may be essential for inhibiting the formation of aflatoxin ${B_1}-8,9-epoxide$. Accordingly, as naturally occurring inhibitory agents, the C. tora seed-derived materials described could be useful as a preventive agent against diseases caused by harmful intestinal bacteria, such as clostridia, and as an inhibitory agent for the mouse liver microsomal conversion of aflatoxin $B_1$ to aflatoxin ${B_1}-8,9-epoxide$.