DOI QR코드

DOI QR Code

Initial adhesion of bone marrow stromal cells to various bone graft substitutes

  • Jo, Young-Jae (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Kim, Kyoung-Hwa (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Koo, Ki-Tae (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Kim, Tae-Il (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Seol, Yang-Jo (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Lee, Yong-Moo (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Ku, Young (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Chung, Chong-Pyoung (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Rhyu, In-Chul (Department of Periodontology, Seoul National University School of Dentistry)
  • Received : 2010.01.01
  • Accepted : 2011.02.09
  • Published : 2011.04.30

Abstract

Purpose: The aim of this study is to determine whether certain biomaterials have the potential to support cell attachment. After seeding bone marrow stromal cells onto the biomaterials, we investigated their responses to each material in vitro. Methods: Rat bone marrow derived stromal cells were used. The biomaterials were deproteinized bovine bone mineral (DBBM), DBBM coated with fibronectin (FN), synthetic hydroxyapatite (HA), HA coated with FN, HA coated with $\beta$-tricalcium phosphate (TCP), and pure $\beta$-TCP. With confocal laser scanning microscopy, actin filaments and vinculin were observed after 6, 12, and 24 hours of cell seeding. The morphological features of cells on each biomaterial were observed using scanning electron microscopy at day 1 and 7. Results: The cells on HA/FN and HA spread widely and showed better defined actin cytoskeletons than those on the other biomaterials. At the initial phase, FN seemed to have a favorable effect on cell adhesion. In DBBM, very few cells adhered to the surface. Conclusions: Within the limitations of this study, we can conclude that in contrast with DBBM not supporting cell attachment, HA provided a more favorable environment with respect to cell attachment.

Keywords

References

  1. van den Dolder J, Bancroft GN, Sikavitsas VI, Spauwen PH, Mikos AG, Jansen JA. Effect of fibronectin- and collagen I-coated titanium fiber mesh on proliferation and differentiation of osteogenic cells. Tissue Eng 2003;9:505-15. https://doi.org/10.1089/107632703322066688
  2. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003;24:2077-82. https://doi.org/10.1016/S0142-9612(02)00635-X
  3. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007;28:335-43. https://doi.org/10.1016/j.biomaterials.2006.06.013
  4. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6. https://doi.org/10.1126/science.8493529
  5. Turhani D, Weissenböck M, Watzinger E, Yerit K, Cvikl B, Ewers R, et al. Invitro study of adherent mandibular osteoblast-like cells on carrier materials. Int J Oral Maxillofac Surg 2005;34:543-50. https://doi.org/10.1016/j.ijom.2004.10.023
  6. Okumura A, Goto M, Goto T, Yoshinari M, Masuko S, Katsuki T, et al. Substrate affects the initial attachment and subsequent behavior of human osteoblastic cells (Saos-2). Biomaterials 2001;22:2263-71. https://doi.org/10.1016/S0142-9612(00)00415-4
  7. Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AI. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990;24:1563-70. https://doi.org/10.1002/jbm.820241202
  8. Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328-37. https://doi.org/10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q
  9. Hattori H, Masuoka K, Sato M, Ishihara M, Asazuma T, Takase B, et al. Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J Biomed Mater Res B Appl Biomater 2006;76:230-9.
  10. Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, Barbarisi M, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med 2010;21:353-63. https://doi.org/10.1007/s10856-009-3840-z
  11. Dong J, Uemura T, Shirasaki Y, Tateishi T. Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 2002;23:4493-502. https://doi.org/10.1016/S0142-9612(02)00193-X
  12. Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 2002;13:231-9. https://doi.org/10.1097/00001665-200203000-00009
  13. Camelo M, Nevins ML, Schenk RK, Simion M, Rasperini G, Lynch SE, et al. Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide. Int J Periodontics Restorative Dent 1998;18:321-31.
  14. Stephan EB, Jiang D, Lynch S, Bush P, Dziak R. Anorganic bovine bone supports osteoblastic cell attachment and proliferation. J Periodontol 1999;70:364-9. https://doi.org/10.1902/jop.1999.70.4.364
  15. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999;14:835-40.
  16. Grzesik WJ, Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994;9:487-96.
  17. Grzesik WJ, Ivanov B, Robey FA, Southerland J, Yamauchi M. Synthetic integrin-binding peptides promote adhesion and proliferation of human periodontal ligament cells in vitro. J Dent Res 1998;77:1606-12. https://doi.org/10.1177/00220345980770080801
  18. Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 1988;254:317-30.
  19. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
  20. Brodie JC, Goldie E, Connel G, Merry J, Grant MH. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A 2005;73:409-21.
  21. Petrovic L, Schlegel AK, Schultze-Mosgau S, Wiltfang J. Different substitute biomaterials as potential scaffolds in tissue engineering. Int J Oral Maxillofac Implants 2006;21:225-31.
  22. Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J. Surface- and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Investig 2009;13:149-55. https://doi.org/10.1007/s00784-008-0214-8
  23. Wiedmann-Al-Ahmad M, Gutwald R, Gellrich NC, Hübner U, Schmelzeisen R. Search for ideal biomaterials to cultivate human osteoblast-like cells for reconstructive surgery. J Mater Sci Mater Med 2005;16:57-66. https://doi.org/10.1007/s10856-005-6447-z
  24. Kübler A, Neugebauer J, Oh JH, Scheer M, Zöller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent 2004;13:171-9. https://doi.org/10.1097/01.ID.0000127522.14067.11
  25. Açil Y, Terheyden H, Dunsche A, Fleiner B, Jepsen S. Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J Biomed Mater Res 2000;51:703-10. https://doi.org/10.1002/1097-4636(20000915)51:4<703::AID-JBM19>3.0.CO;2-A
  26. Ignjatovic N, Ninkov P, Kojic V, Bokurov M, Srdic V, Krnojelac D, et al. Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microsc Res Tech 2006;69:976-82. https://doi.org/10.1002/jemt.20374
  27. Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss. Clin Oral Implants Res 2003;14:137-43. https://doi.org/10.1034/j.1600-0501.2003.140201.x
  28. Zitzmann NU, Schärer P, Marinello CP, Schüpbach P, Berglundh T. Alveolar ridge augmentation with Bio-Oss: a histologic study in humans. Int J Periodontics Restorative Dent 2001;21:288-95.
  29. Burmeister JS, Vrany JD, Reichert WM, Truskey GA. Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J Biomed Mater Res 1996;30:13-22. https://doi.org/10.1002/(SICI)1097-4636(199601)30:1<13::AID-JBM3>3.0.CO;2-U
  30. Suzuki T, Hukkanen M, Ohashi R, Yokogawa Y, Nishizawa K, Nagata F, et al. Growth and adhesion of osteoblast-like cells derived from neonatal rat calvaria on calcium phosphate ceramics. J Biosci Bioeng 2000;89:18-26. https://doi.org/10.1016/S1389-1723(00)88045-7

Cited by

  1. In Vitro Biocompatibility Assessment and In Vivo Behavior of a New Osteoconductive βTCP Bone Substitute vol.25, pp.4, 2011, https://doi.org/10.1097/id.0000000000000442
  2. Preliminary Results of Bone Regeneration in Oromaxillomandibular Surgery Using Synthetic Granular Graft vol.2018, pp.None, 2011, https://doi.org/10.1155/2018/8503427
  3. Evaluation of Two Highly Porous Microcrystalline Biphasic Calcium Phosphate-Based Bone Grafts for Bone Regeneration: An Experimental Study in Rabbits vol.8, pp.6, 2011, https://doi.org/10.4236/msce.2020.86002