• Title/Summary/Keyword: morphological processing

Search Result 525, Processing Time 0.035 seconds

The Effect of Mask Patterns on Microwire Formation in p-type Silicon (P-형 실리콘에서 마이크로 와이어 형성에 미치는 마스크 패턴의 영향)

  • Kim, Jae-Hyun;Kim, Kang-Pil;Lyu, Hong-Kun;Woo, Sung-Ho;Seo, Hong-Seok;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.418-418
    • /
    • 2008
  • The electrochemical etching of silicon in HF-based solutions is known to form various types of porous structures. Porous structures are generally classified into three categories according to pore sizes: micropore (below 2 nm in size), mesopore (2 ~ 50 nm), and macropore (above 50 nm). Recently, the formation of macropores has attracted increasing interest because of their promising characteristics for an wide scope of applications such as microelectromechanical systems (MEMS), chemical sensors, biotechnology, photonic crystals, and photovoltaic application. One of the promising applications of macropores is in the field of MEMS. Anisotropic etching is essential step for fabrication of MEMS. Conventional wet etching has advantages such as low processing cost and high throughput, but it is unsuitable to fabricate high-aspect-ratio structures with vertical sidewalls due to its inherent etching characteristics along certain crystal orientations. Reactive ion dry etching is another technique of anisotropic etching. This has excellent ability to fabricate high-aspect-ratio structures with vertical sidewalls and high accuracy. However, its high processing cost is one of the bottlenecks for widely successful commercialization of MEMS. In contrast, by using electrochemical etching method together with pre-patterning by lithographic step, regular macropore arrays with very high-aspect-ratio up to 250 can be obtained. The formed macropores have very smooth surface and side, unlike deep reactive ion etching where surfaces are damaged and wavy. Especially, to make vertical microwire or nanowire arrays (aspect ratio = over 1:100) on silicon wafer with top-down photolithography, it is very difficult to fabricate them with conventional dry etching. The electrochemical etching is the most proper candidate to do it. The pillar structures are demonstrated for n-type silicon and the formation mechanism is well explained, while such a experimental results are few for p-type silicon. In this report, In order to understand the roles played by the kinds of etching solution and mask patterns in the formation of microwire arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, dimethyl sulfoxide (DMSO), iso-propanol, and mixtures of HF with water on the structure formation on monocrystalline p-type silicon with a resistivity with 10 ~ 20 $\Omega{\cdot}cm$. The different morphological results are presented according to mask patterns and etching solutions.

  • PDF

Moving Object Contour Detection Using Spatio-Temporal Edge with a Fixed Camera (고정 카메라에서의 시공간적 경계 정보를 이용한 이동 객체 윤곽선 검출 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.474-486
    • /
    • 2010
  • In this paper, we propose a new method for detection moving object contour using spatial and temporal edge. In general, contour pixels of the moving object are likely present around pixels with high gradient value along the time axis and the spatial axis. Therefore, we can detect the contour of the moving objects by finding pixels which have high gradient value in the time axis and spatial axis. In this paper, we introduce a new computation method, termed as temporal edge, to compute an gradient value along the time axis for any pixel on an image. The temporal edge can be computed using two input gray images at time t and t-2 using the Sobel operator. Temporal edge is utilized to detect a candidate region of the moving object contour and then the detected candidate region is used to extract spatial edge information. The final contour of the moving object is detected using the combination of these two edge information, which are temporal edge and spatial edge, and then the post processing such as a morphological operation and a background edge removing procedure are applied to remove noise regions. The complexity of the proposed method is very low because it dose not use any background scene and high complex operation, therefore it can be applied to real-time applications. Experimental results show that the proposed method outperforms the conventional contour extraction methods in term of processing effort and a ghost effect which is occurred in the case of entropy method.

Present and Future of Thermoplastic Elastomers As Environmentally Friendly Organic Materials (친환경 유기 소재로서 열가소성 탄성체의 오늘과 내일)

  • Choi, Eun-Ji;Yoon, Ji-Hwan;Jo, Jung-Kyu;Shim, Sang-Eun;Yun, Ju-Ho;Kim, Il
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.170-187
    • /
    • 2010
  • Much interest on the thermoplastic elastomers (TPEs) has recently been attracted in commercial fields as well as scientific and applied researches. The TPEs have their own characteristic area especially in relation with block copolymers as well as many other polymeric materials, since they show interesting features displayed by the conventional vulcanized rubber, and at the same time, by the thermoplastics. In addition, they are characterized by a set of interesting properties inherent to block and graft copolymers, variety of blends and vulcanized materials. The importance of TPE as organic materials can be evaluated by the number of published reports (papers, patents, technical reports, etc). The input of the concept 'thermoplastic elastomer' to SciFinderScholar yields 18,508 results between 1939 and July 10, 2010, and the number increased exponentially after the mid of 1990. For the suitable introduction of the TPE, historic, scientific, technical and commercial considerations should be taken into account. This review article starts with a brief discussion on historical considerations, followed by a introduction of the main preparations and analytical techniques utilized in chemical, structural, and morphological studies. The properties, processing tools, the position among organic materials, and applications of TPEs are also briefly reviewed. Finally, the most probable trends of their future development are discussed in a short final remarks.

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

What Concerns Does ChatGPT Raise for Us?: An Analysis Centered on CTM (Correlated Topic Modeling) of YouTube Video News Comments (ChatGPT는 우리에게 어떤 우려를 초래하는가?: 유튜브 영상 뉴스 댓글의 CTM(Correlated Topic Modeling) 분석을 중심으로)

  • Song, Minho;Lee, Soobum
    • Informatization Policy
    • /
    • v.31 no.1
    • /
    • pp.3-31
    • /
    • 2024
  • This study aimed to examine public concerns in South Korea considering the country's unique context, triggered by the advent of generative artificial intelligence such as ChatGPT. To achieve this, comments from 102 YouTube video news related to ethical issues were collected using a Python scraper, and morphological analysis and preprocessing were carried out using Textom on 15,735 comments. These comments were then analyzed using a Correlated Topic Model (CTM). The analysis identified six primary topics within the comments: "Legal and Ethical Considerations"; "Intellectual Property and Technology"; "Technological Advancement and the Future of Humanity"; "Potential of AI in Information Processing"; "Emotional Intelligence and Ethical Regulations in AI"; and "Human Imitation."Structuring these topics based on a correlation coefficient value of over 10% revealed 3 main categories: "Legal and Ethical Considerations"; "Issues Related to Data Generation by ChatGPT (Intellectual Property and Technology, Potential of AI in Information Processing, and Human Imitation)"; and "Fear for the Future of Humanity (Technological Advancement and the Future of Humanity, Emotional Intelligence, and Ethical Regulations in AI)."The study confirmed the coexistence of various concerns along with the growing interest in generative AI like ChatGPT, including worries specific to the historical and social context of South Korea. These findings suggest the need for national-level efforts to ensure data fairness.

Physicochemical Characteristics and Varietal Improvement Related to Palatability of Cooked Rice or Suitability to Food Processing in Rice (쌀 식미 및 가공적성에 관련된 이화학적 특성)

  • 최해춘
    • Proceedings of the Korean Journal of Food and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.39-74
    • /
    • 2001
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s∼1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great, progress and success was obtained in development of high-quality japonica cultivars and qualify evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice caltivars and special rices adaptable for food processing such as large kernel, chalky endosperm aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and torture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak. hot paste and consistency viscosities of viscogram with year difference. The high-quality rice variety “Ilpumbyeo” showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic mcroscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high Probability of determination. The ${\alpha}$ -amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, shelved the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogiadation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice bread. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large gram rices showed better suitability for fermentation and brewing. Our breeding efforts on rice quality improvement for the future should focus on enhancement of palatability of cooked rice and marketing qualify as well as the diversification in morphological and physicochemical characteristics of rice grain for various value-added rice food processings.

  • PDF

Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor

  • Choi, In Young;Park, Do Hyeon;Chin, Brayan A.;Lee, Cheonghoon;Lee, Jinyoung;Park, Mi-Kyung
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.668-681
    • /
    • 2020
  • The purpose of this study was aimed to isolate a Salmonella Typhimurium-specific phage (KFS-ST) from washing water in a poultry processing facility and to investigate the feasibility of the KFS-ST as a novel bio-receptor for the magnetoelastic (ME) biosensor method. KFS-ST against S. Typhimurium was isolated, propagated, and purified using a CsCl-gradient ultracentrifugation. Morphological characteristics of KFS-ST were analyzed using transmission electron microscopy (TEM). Its specificity and efficiency of plating analysis were conducted against 39 foodborne pathogens. The temperature and pH stabilities of KFS-ST were investigated by the exposure of the phage to various temperatures (-70℃-70℃) and pHs (1-12) for 1 h. A one-step growth curve analysis was performed to determine the eclipse time, latent time and burst size of phage. The storage stability of KFS-ST was studied by exposing KFS-ST to various storage temperatures (-70℃, -20℃, 4℃, and 22℃) for 12 weeks. KFS-ST was isolated and purified with a high concentration of (11.47 ± 0.25) Log PFU/mL. It had an icosahedral head (56.91 ± 2.90 nm) and a non-contractile tail (225.49 ± 2.67 nm), which was classified into the family of Siphoviridae in the order of Caudovirales. KFS-ST exhibited an excellent specificity against only S. Typhimurium and S. Enteritidis, which are considered two of the most problematic Salmonella strains in the meat and poultry. However, KFS-ST did not exhibit any specificity against six other Salmonella and 27 non-Salmonella strains. KFS-ST was stable at temperature of 4℃ to 50℃ and at pH of 4 to 12. The eclipse time, latent time, and burst size of KFS-ST were determined to be 10 min, 25 min and 26 PFU/ infected cell, respectively. KFS-ST was relatively stable during the 12-week storage period at all tested temperatures. Therefore, this study demonstrated the feasibility of KFS-ST as a novel bio-receptor for the detection of S. Typhimurium and S. Enteritidis in meat and poultry products using the ME biosensor method.

Current status on the development of molecular markers for differentiation of the origin of Angelica spp. (당귀(Angelica spp.)의 기원분석에 관한 분자생물학적 연구 현황 및 향후과제)

  • Lee, Shin-Woo;Lee, Soo-Jin;Han, Eun-Heui;Sin, Eui-Cheol;Cho, Kye Man;Kim, Yun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • The dried root of Angelica species is used in traditional Chinese medicine in East Asia, particularly in Korea, China and Japan. Since the plant origin differs in these countries, they are often misused or adulterated in the commercial markets, resulting in distrust among the consumers. Enormous efforts have therefore been focused to distinguish the origin for the Angelica genus, by using morphological or cytogenetical analyses, and chemical markers based on biochemical analyses of secondary metabolites. DNA is considerably stable against different cultivation conditions, and to treatment and processing after harvesting of plants. Hence, several researches have been filed for the development of molecular markers, based on the single nucleotide polymorphisms in specific regions of DNA. However, there are several obstacles for application in the commercial markets, concerning the reproducibility, accuracy, sensitivity, and rapidity of these tests. In this review, we summarize the research achievements that help classify the origin of Angelica species, in particular, Angelica gigas Nakai. A. sinensis(oliv.) Diels, A. acutiloba Kitag., and A. acutiloba var. sugiyamae Hikino. Further researches are required for practical applications.

Residual Stress Behavior of PMDA/6FDA-PDA Copolyimide Thin Films (PMDA/6FDA-PDA 공중합 폴리이미드의 잔류응력 거동)

  • Jang, Won Bong;Chung, Hyun Soo;Joe, Yungil;Han, Haksoo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1014-1019
    • /
    • 1999
  • Copolyamic acid PMDA/6FDA-PDA(PAA) and homopolyamic acids PMDA-PDA(PAA) and 6FDA-PDA(PAA) were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride(PMDA) and 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride(6FDA) as the dianhydride and 1,4-phenylenediamine (PDA) as the diamine. Residual stresses were detected in-situ during thermal imidization of the co- and homopolyimide precursors as a function of processing temperature over the range of $25{\sim}400^{\circ}C$ using thin film stress analyzer(TFSA), and morphological structures were investigated by WAXD. In comparison, the resultant residual stress of polyimide films composed of different compositions decreased with the increasing content of PMDA unit in the chain and was about 5 Mpa in compression mode for PMDA-PDA. In this study, the synthesis of random PMDA/6FDA-PDA copolyimide could be completed and compensate for the difficulty of process due to high $T_g$ of PMDA-PDA and relatively higher stress of 6FDA-PDA. It showed that we can make a low level stress copolyimied having excellent mechanical properties by incorporating appropriate rod-like rigid structure PMDA-PDA unit into 6FDA-PDA polyimide backbone which generally shows higher stress due to rotational hinges such as bulky di(trifluoromethyl). Specially, PMDA/6FDA-PDA(0.9:0.1:1.0) satisfied excellent mechanical property and low level stress as an inter layer showing low dielectric constant.

  • PDF

A New Preprocessing Method for the Seedup of the Watershed-based Image Segmentation (분수계 기반 영상 분할의 속도 개선을 위한 새로운 전처리 방법)

  • Cho, Sang-Hyun;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, a new preprocessing method is proposed to speedup the watershed-based image segmentation In the proposed method, the gradient correction values of ramp edges are calculated from the positions and width of the ramp edges using Laplacian operator, and then, unlike the conventional method in which the monoscale or multi scale gradient image is directly used as a reference iImage, the reference image is obtained by adding the threshold value to each position of the ramp edges in the monoscale gradient image And the marker image is reconstructed on the reference image by erosion By preprocessing the image for the watershed transformation in such a manner, we can reduce the oversegmentations far more than those of applying the conventional morphological filter to the simple monoscale or multiscale gradient-based reference image Thus, we can reduce the total image segmentation time by reducing the time of postprocessing of region merging, which consumes most of the processing time In the watershed-based image segmentation, Experimental results indicate that the proposed method can speedup the total image segmentation about twice than those of the conventional methods, without the loss of ramp edges and principal edges around the dense-edge region.

  • PDF