• 제목/요약/키워드: more economical dimension

검색결과 24건 처리시간 0.026초

치환율에 따른 심층혼합 처리공법의 최적 설계 (The Best Design of the Deep Mixing Method by the rate of substitution)

  • 박춘식;이준석;정원섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.123-131
    • /
    • 2009
  • 본 연구에서는 2차원 및 3차원 유한요소 해석을 이용하여 심층혼합처리 공법에 의한 연약지반 개량시 개량 심도를 결정 하였고, 그 결과는 다음과 같았다. 1. 2차원 해석 결과는 3차원 해석 결과 보다 약 10% 정도 크게 해석되었다. 2. 연약지반의 치환율이 5%이하 일 때 침하량은 급격히 증가하였다. 3. 심층혼합공법으로 연약지반 개량시 횡방향 간격 3m, 종방향 간격 6m, 그리고 8m의 심도로 개량하는것이 가장 경제적인 것으로 나타났다. 4. 심층혼합공법으로 연약지반 개량시 2차원 유한요소 해석보다 3차원 유한요소 해석으로 결정되어야 한다.

  • PDF

Optimal dimensioning for the corner combined footings

  • Lopez-Chavarria, Sandra;Luevanos-Rojas, Arnulfo;Medina-Elizondo, Manuel
    • Advances in Computational Design
    • /
    • 제2권2호
    • /
    • pp.169-183
    • /
    • 2017
  • This paper shows optimal dimensioning for the corner combined footings to obtain the most economical contact surface on the soil (optimal area), due to an axial load, moment around of the axis "X" and moment around of the axis "Y" applied to each column. The proposed model considers soil real pressure, i.e., the pressure varies linearly. The classical model is developed by trial and error, i.e., a dimension is proposed, and after, using the equation of the biaxial bending is obtained the stress acting on each vertex of the corner combined footing, which must meet the conditions following: 1) Minimum stress should be equal or greater than zero, because the soil is not withstand tensile. 2) Maximum stress must be equal or less than the allowable capacity that can be capable of withstand the soil. Numerical examples are presented to illustrate the validity of the optimization techniques to obtain the minimum area of corner combined footings under an axial load and moments in two directions applied to each column.

인터넷 쇼핑몰 유형에 따른 소비자 특성 및 의복구매성향에 관한 연구 (A Study on Characteristic of Consumer and Clothing Purchase Orientations according to Internet Shopping Mall Type)

  • 박옥련;정유정;이현지
    • 한국의류학회지
    • /
    • 제26권2호
    • /
    • pp.292-302
    • /
    • 2002
  • The purpose of this study was to research on Characteristic of Consumer and Clothing Purchase Orientations according to Internet Shopping Mall Type. The results were as follows; First, the clothing purchase orientations consisted of 5 dimension; product recondition, consumer service, shopping experience, risk of functional recognition, and of economical recognition. Second, the analysis of items of 5 dimension on clothing purchase orientations according to Internet shopping mall type produced as follows; 1. Product recognition - Variety of products appeared to be important elements and the average of specialized shopping mall was higher than that of general shopping mall. 2. Consumer service - Reliability of product information appeared to be more critical than others and the average of specialized shopping mall was bigger than that of others 3. Shopping experience - The item of convenience over time and space, the hard sell and over-service were found critical elements. Especially convenience over time of Mall of Malls, the convenience a far from hard sell element of department style shopping mall, and convenience over space of specialized mall were higher than that of others. 4. Risk element of functional recognition - No specific distinction appeared according to shopping mall type. 5. Risk element of economical recognition - Mending and additional cost arising from bad choice were found being critical element.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • 제14권1호
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Modeling for the strap combined footings Part I: Optimal dimensioning

  • Aguilera-Mancilla, Gabriel;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.97-108
    • /
    • 2019
  • This paper presents a new model for the strap combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. Research presented in this paper shows that can be applied to the T-shaped combined footings and the rectangular combined footings. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the strap combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. Numerical examples are presented to obtain the optimal area of the contact surface on the soil for the strap combined footings subjected to an axial load and moments in two directions applied to each column. Appendix shows the Tables 4 and 5 for the strap combined footings, the Table 6 for the T-shaped combined footings, and the Table 7 for the rectangular combined footings.

Chaotic Forecast of Time-Series Data Using Inverse Wavelet Transform

  • Matsumoto, Yoshiyuki;Yabuuchi, Yoshiyuki;Watada, Junzo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.338-341
    • /
    • 2003
  • Recently, the chaotic method is employed to forecast a near future of uncertain phenomena. This method makes it possible by restructuring an attractor of given time-series data in multi-dimensional space through Takens' embedding theory. However, many economical time-series data are not sufficiently chaotic. In other words, it is hard to forecast the future trend of such economical data on the basis of chaotic theory. In this paper, time-series data are divided into wave components using wavelet transform. It is shown that some divided components of time-series data show much more chaotic in the sense of correlation dimension than the original time-series data. The highly chaotic nature of the divided component enables us to precisely forecast the value or the movement of the time-series data in near future. The up and down movement of TOPICS value is shown so highly predicted by this method as 70%.

  • PDF

치수/공차표의 자동생성 알고리듬 (An Algorithm for Automatic Generation of Dimension and Tolerance Charts)

  • 정종인;김광수;최후곤
    • 대한산업공학회지
    • /
    • 제29권1호
    • /
    • pp.21-31
    • /
    • 2003
  • Determination of operational dimensions and tolerances is complex if there exist inconsistencies between operational and design specifications. Dimension and tolerance charts (D&T charts) have been used to establish the relationships among operational dimensions in complex machining. This chart proves that individual operations can be harmonized when they are interconnected. However, it is hard to generate the chart manually. Because operational dimensions and tolerances must meet the design specifications, the dimensions and tolerances of interconnected operations have to be verified serially for economical operations. In this paper, the chart is automatically generated from the interconnected operations. More importantly, all operational dimensions and tolerances displayed in the chart have been verified by using LP to meet the design specifications. Finally, the chart is converted to an operational routing sheet that contains a detailed process plan along with cutting speed, feed rate, and operational references based on material hardness, surface finish, and tool nose radius.

2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구 (A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis)

  • 박춘식;박해찬;김종환;박영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구 (A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimensional Analysis)

  • 김종환;박춘식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.181-185
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2 dimensional analysis for convenience of analysis and time saving. However, the construction field is 3 dimension, in this study, practised the 3 dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2 and 3 dimensional analysis. existing 2 dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3 dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2 dimension analysis is underestimated. Moreover, results of 2 and 3 dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H and 1.0H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2 dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3 dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings

  • Velazquez-Santilla, Francisco;Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel;Sandoval-Rivas, Ricardo
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.49-69
    • /
    • 2018
  • This paper shows an optimal design for reinforced concrete rectangular combined footings based on a criterion of minimum cost. The classical design method for reinforced concrete rectangular combined footings is: First, a dimension is proposed that should comply with the allowable stresses (Minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity withstand by the soil); subsequently, the effective depth is obtained due to the maximum moment and this effective depth is checked against the bending shear and the punching shear until, it complies with these conditions, and then the steel reinforcement is obtained, but this is not guaranteed that obtained cost is a minimum cost. A numerical experimentation shows the model capability to estimate the minimum cost design of the materials used for a rectangular combined footing that supports two columns under an axial load and moments in two directions at each column in accordance to the building code requirements for structural concrete and commentary (ACI 318S-14). Numerical experimentation is developed by modifying the values of the rectangular combined footing to from "d" (Effective depth), "b" (Short dimension), "a" (Greater dimension), "${\rho}_{P1}$" (Ratio of reinforcement steel under column 1), "${\rho}_{P2}$" (Ratio of reinforcement steel under column 2), "${\rho}_{yLB}$" (Ratio of longitudinal reinforcement steel in the bottom), "${\rho}_{yLT}$" (Ratio of longitudinal reinforcement steel at the top). Results show that the optimal design is more economical and more precise with respect to the classical design. Therefore, the optimal design presented in this paper should be used to obtain the minimum cost design for reinforced concrete rectangular combined footings.