Browse > Article
http://dx.doi.org/10.12989/scs.2019.30.2.097

Modeling for the strap combined footings Part I: Optimal dimensioning  

Aguilera-Mancilla, Gabriel (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Luevanos-Rojas, Arnulfo (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Lopez-Chavarria, Sandra (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Medina-Elizondo, Manuel (Institute of Multidisciplinary Researches, Autonomous University of Coahuila)
Publication Information
Steel and Composite Structures / v.30, no.2, 2019 , pp. 97-108 More about this Journal
Abstract
This paper presents a new model for the strap combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. Research presented in this paper shows that can be applied to the T-shaped combined footings and the rectangular combined footings. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the strap combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. Numerical examples are presented to obtain the optimal area of the contact surface on the soil for the strap combined footings subjected to an axial load and moments in two directions applied to each column. Appendix shows the Tables 4 and 5 for the strap combined footings, the Table 6 for the T-shaped combined footings, and the Table 7 for the rectangular combined footings.
Keywords
strap combined footings; T-shaped combined footings; rectangular combined footings; optimal dimensioning; contact surface; more economical dimension; minimum area;
Citations & Related Records
Times Cited By KSCI : 14  (Citation Analysis)
연도 인용수 순위
1 Abbasnia, R., Shayanfar, M. and Khodam, A. (2014), "Reliabilitybased design Optimization of structural systems using a hybrid genetic algorithm", Struct. Eng. Mech., Int. J., 52(6), 1099-1120.   DOI
2 Al-Ansari, M.S. (2013), "Structural cost of optimized reinforced concrete isolated footing", Int. Schol. Sci. Res. Innov., 7(4), 193-200.
3 Aschheim, M., Hernandez-Montes, E. and Gil-Martin, L.M. (2008), "Design of optimally reinforced RC beam, column, and wall sections", J. Struct. Eng., 134(2), 231-239.   DOI
4 Awad, Z.K. (2013), "Optimization of a sandwich beam design: analytical and numerical solutions", Struct. Eng. Mech., Int. J., 48(1), 93-102.   DOI
5 Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidiscip. O., 30(3), 236-242.   DOI
6 Bordignon, R. and Kripka, M. (2012), "Optimum design of reinforced concrete columns subjected to uniaxial flexural compression", Compos. Concrete, 9(5), 327-340.   DOI
7 Ceranic, B. and Fryer, C. (2000), "Sensitivity analysis and optimum design curves for the minimum cost design of singly and doubly reinforced concrete beams", Struct. Multidiscip. O., 20(4), 260-268.   DOI
8 Fleith de Medeiros, G. and Kripka, M. (2013), "Structural Optimization and proposition of pre-sizing parameters for beams in reinforced concrete buildings", Compos. Concrete, 11(3), 253-270.   DOI
9 Gao, Q., Yang, M.G. and Qiao, J.D. (2017), "A multiparameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder", Struct. Eng. Mech., Int. J., 64(5), 557-566.
10 Gharehbaghi, S. (2018), "Damage controlled optimum seismic design of reinforced concrete framed structures", Struct. Eng. Mech., Int. j., 65(1), 53-68.
11 Jarmai, K., Snyman, J.A., Farkas, J. and Gondos, G. (2003), "Optimal design of a welded I-section frame using four conceptually different optimization algorithms", Struct. Multidiscip. O., 25(1), 54-61.   DOI
12 Ha, T. (1993), "Optimum Design of Unstiffened Built-up Girders", J. Struct. Eng., 119(9), 2784-2792.   DOI
13 Hans, G. (1985), "Flexural limit design of column footing", J. Struct. Eng., 111(11), 2273-2287.   DOI
14 Hwang, Y., Jin, S.S., Jung, H.Y., Kim, S.H., Lee, J.J. and Jung, H.J. (2018), "Experimental validation of FE model updating based on multi-objective optimization using the surrogate model", Struct. Eng. Mech., Int. J., 65(2), 173-181.
15 Jiang, D. (1983), "Flexural Strength of Square Spread Footing", J. Struct. Eng., 109(8), 1812-1819.   DOI
16 Jiang, D. (1984), "Closure to "Flexural Strength of Square Spread Footing" by Da Hua Jiang (August, 1983)", J. Struct. Eng., 110(8), 1926-1926.   DOI
17 Kao, CH-S. and Yeh, I-CH. (2014), "Optimal design of plane frame structures using artificial neural networks and ratio variables", Struct. Eng. Mech., Int. J., 52(4), 739-753.   DOI
18 Kaveh, A. and Talatahari, S. (2012), "A hybrid CSS and PSO algorithm for optimal design of structures", Struct. Eng. Mech., Int. J., 42(6), 783-797.   DOI
19 Kaveh, A. and Bijari, S. (2018), "Simultaneous analysis, design and Optimization of trusses via force method", Struct. Eng. Mech., Int. J., 65(3), 233-241.
20 Kaveh, A. and Mahdavi Dahoei, V.R. (2016), "Optimal design of truss structures using a new optimization algorithm based on global sensitivity analysis", Struct. Eng. Mech., Int. J., 60(6), 1093-1117.   DOI
21 Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017a), "A mathematical model for dimensioning of square isolated footings using optimization techniques: general case", Int. J. Innov. Comput. I., 13(1), 67-74.
22 Khajehzadeh, M., Taha M.R. and Eslami, M. (2014), "Multiobjective optimization of foundation using global-local gravitational search algorithm", Struct. Eng. Mech., Int. J., 50(3), 257-273.   DOI
23 Kripka, M. and Chamberlain Pravia, Z.M. (2013), "Cold-formed steel channel columns optimization with simulated annealing method", Struct. Eng. Mech., Int. J., 48(3), 383-394.   DOI
24 Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81(18-19), 1957-1966.   DOI
25 Lopez-Chavarria, S., Luevanos-Rojas, A. and Medina-Elizondo, M. (2017b), "Optimal dimensioning for the corner combined footings", Adv. Comput. Des., 2(2), 169-183.   DOI
26 Luevanos-Rojas, A. (2012a), "A mathematical model for dimensioning of footings square", I.RE.C.E., 3(4), 346-350.
27 Luevanos-Rojas, A. (2016), "A mathematical model for the dimensioning of combined footings of rectangular shape", Rev. Tec. Fac. Ing. Univ., 39(1), 3-9.
28 Luevanos-Rojas, A. (2012b), "A mathematical model for the dimensioning of circular footings", Far East J. Math. Sci., 71(2), 357-367.
29 Luevanos-Rojas, A. (2013), "A mathematical model for dimensioning of footings rectangular", ICIC Expr. Lett. Part B: Appl., 4(2), 269-274.
30 Luevanos-Rojas, A. (2015), "A new mathematical model for dimensioning of the boundary trapezoidal combined footings", Int. J. Innov. Comput. I., 11(4), 1269-1279.
31 Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2017), "Optimal design for rectangular isolated footings using the real soil pressure", Ing. Invest., 37(2), 25-33.
32 Sahab, M.G., Ashour, A.F. and Toropov, V.V. (2005), "Cost optimisation of reinforced concrete flat slab buildings", Eng. Struct., 27(3), 313-322.   DOI
33 Luevanos-Rojas, A., Lopez-Chavarria, S. and Medina-Elizondo, M. (2018), "A new model for T-shaped combined footings Part I: Optimal dimensioning", Geomech. Eng., Int. J., 14(1), 51-60.
34 Ozturk, H.T. and Durmus, A. (2013), "Optimum cost design of RC columns using artificial bee colony algorithm", Struct. Eng. Mech., Int. J., 45(5), 643-654.   DOI
35 Rath, D.P., Ahlawat, A.S. and Ramaswamy, A. (1999), "Shape optimization of RC flexural members", J. Struct. Eng., 125(12), 1439-1445.   DOI
36 Tiliouine, B. and Fedghouche, F. (2014), "Cost Optimization of reinforced high strength concrete T-sections in flexure", Struct. Eng. Mech., Int. J., 49(1), 65-80.   DOI
37 Wang, Y. and Kulhawy, F.H. (2008), "Economic design optimization of foundations", J. Geotech. Geoenviron., 134(8), 1097-1105.   DOI
38 Uzuner, B.A. (2016), Introduction to Foundation Engineering, Derya Bookstore, Trabzon, Turkey.
39 Velazquez-Santillan, F., Luevanos-Rojas, A., Lopez-Chavarria, S., Medina-Elizondo, M. and Sandoval-Rivas, R. (2018), "Numerical experimentation for the optimal design for reinforced concrete rectangular combined footings", Adv. Comput. Des., 3(1), 49-69.   DOI
40 Wang, Y. (2009), "Reliability-based economic design optimization of spread foundations", J. Geotech. Geoenviron., 135(7), 954-959.   DOI
41 Zhang, H.Z., Liu, X., Yi, W.J. and Deng, Y.H. (2018), "Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural Optimization methods", Struct. Eng. Mech., Int. J., 65(3), 303-314.
42 Zou, X., Chan, C., Li, G. and Wang, Q. (2007), "Multiobjective optimization for performance-based design of reinforced concrete frames", J. Struct. Eng., 133(10), 1462-1474.   DOI