• Title/Summary/Keyword: mooring system

Search Result 359, Processing Time 0.029 seconds

Impacts of sea-level rise on port facilities

  • Son, Chang-Bae;Kim, Chang-Je;Jang, Won-Yil;Matsubara, Yuhei;Noda, Hedeaki;Kim, Mi-Kum
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.173-177
    • /
    • 2006
  • From the viewpoint of coastal hydrodynamics, one of the most important effects of global warming is a sea-level rise in coastal areas. In the present study, impacts on port facilities against sea-level rise were investigated. The sea-level rise causes the increase of the water depth, and it generates variations on the wave height, buoyancy, tidal system and nearshore current system and so on. The increase of water depth gives rise to the decrease of crown height of the structure and it causes increase of wave overtopping quantity. It may flood the port zone and its facilities, and may decrease harbor tranquility. It also leads to difficulties on navigation, mooring and loading/unloading at the port. Increase in water depth also causes increase of wave height in surf zone. This high wave makes structures unstable and may cause them to collapse during storm. In addition, increase in buoyant force due to sea-level rise also makes the gravity type structures unstable. Consequently, theses variations due to sea-level rise will cause functional deterioration of port facilities. In order to protect port facilities from the functional deterioration, reinforcement plan is required such as raising the crown height and increase in block weight and so on. Hence proper estimation method for the protection cost is necessary in order to protect port facilities efficiently. Moreover response strategies and integrated coastal zone management plan is required to maintain the function of port facilities. A simple estimation of cost for breakwaters in Korea was performed in the present study.

  • PDF

Prospects and Economics of Offshore Wind Turbine Systems

  • Pham, Thi Quynh Mai;Im, Sungwoo;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.382-392
    • /
    • 2021
  • In recent years, floating offshore wind turbines have attracted more attention as a new renewable energy resource while bottom-fixed offshore wind turbines reach their limit of water depth. Various projects have been proposed with the rapid increase in installed floating wind power capacity, but the economic aspect remains as a biggest issue. To figure out sensible approaches for saving costs, a comparison analysis of the levelized cost of electricity (LCOE) between floating and bottom-fixed offshore wind turbines was carried out. The LCOE was reviewed from a social perspective and a cost breakdown and a literature review analysis were used to itemize the costs into its various components in each level of power plant and system integration. The results show that the highest proportion in capital expenditure of a floating offshore wind turbine results in the substructure part, which is the main difference from a bottom-fixed wind turbine. A floating offshore wind turbine was found to have several advantages over a bottom-fixed wind turbine. Although a similarity in operation and maintenance cost structure is revealed, a floating wind turbine still has the benefit of being able to be maintained at a seaport. After emphasizing the cost-reduction advantages of a floating wind turbine, its LCOE outlook is provided to give a brief overview in the following years. Finally, some estimated cost drivers, such as economics of scale, wind turbine rating, a floater with mooring system, and grid connection cost, are outlined as proposals for floating wind LCOE reduction.

Development of Ice Load Generation Module to Evaluate Station-Keeping Performance for Arctic Floating Structures in Time Domain

  • Kang, Hyun Hwa;Lee, Dae-Soo;Lim, Ji-Su;Lee, Seung Jae;Jang, Jinho;Jung, Kwang Hyo;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.394-405
    • /
    • 2020
  • To assess the station-keeping performance of floating structures in the Arctic region, the ice load should be considered along with other environmental loads induced by waves, wind, and currents. However, present methods for performance evaluation in the time domain are not effective in terms of time and cost. An ice load generation module is proposed based on the experimental data measured at the KRISO ice model basin. The developed module was applied to a time domain simulation. Using the results of a captive model test conducted in multiple directions, the statistical characteristics of ice loads were analyzed and processed so that an ice load corresponding to an arbitrary angle of the structure could be generated. The developed module is connected to commercial dynamic analysis software (OrcaFlex) as an external force input. Station-keeping simulation in the time domain was conducted for the same floating structure used in the model test. The mooring system was modeled and included to reflect the designed operation scenario. Simulation results show the effectiveness of the proposed ice generation module and its application to station-keeping performance evaluation. Considering the generated ice load, the designed structure can maintain a heading angle relative to ice up to 4°. Station-keeping performance is enhanced as the heading angle conforms to the drift direction. It is expected that the developed module will be used as a platform to verify station-keeping algorithms for Arctic floating structures with a dynamic positioning system.

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Evaluation of Waterway Dredging Work using Spud Control System (스퍼드제어시스템을 이용한 항로준설작업의 평가)

  • Lee, Joong-Woo;Jeong, Dae-Deuk;Cho, Jueng-Eon;Oh, Dong-Hoon;Keum, Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.263-271
    • /
    • 2005
  • The most important point when we engage on waterway dredging work is supplying safe navigational passage to the vessels underway by narrowing dredge work area and removing submerged dangers. In order to meet this end it is neccessary to use auxiliary equipment for shifting actively and mooring and adopt automation of dredging work by integrating information on real time position, dredging depth, and work information. The danger with a spud control system in this study, by the way, is able to employed on continuous dredging work with the narrowest working area allowing wide and safe passages to vessels underway, by moving the dredger to the working zone with the spud controlled automatically. Furthermore, it has been improved definitely compared with the existing dredging proccess management system such that it shows the track of spud and working depth on the electronic navigation chart of window, together with the final outcome of dredging work. The test dredging work at the entrance of Busan North Port for system evaluation showed that actual working time available was twice of the one by the existing anchor system, and that it reduced 38% of time for preparation work and one man power.

  • PDF

Development of Real-time Oceanographic Information System using Platforms of Aquaculture Farms (양식장 플랫폼을 활용한 실시간 해양환경 정보제공시스템 개발연구)

  • Yang, Joon-Yong;Suh, Young-Sang;Choi, Yong-Kyu;Jung, Kyu-Kui;Jeong, Hee-Dong;Park, Jong-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 2007
  • Real-time oceanographic information system was developed using platforms of aquaculture farms to examine causes of mass mortality of hatchery fishes, and to reduce the damage of mass mortality which has been occurred frequently off coast by abnormal change of ocean conditions. The system had the advantages of direct data distribution to fishermen at the farm and instant maintenance of equipments due to easy access to the farms and residents at the farms in comparison with offshore mooring buoy system. To avoid discontinued measurement of the system, repairs caused by malfunction of equipments, bimonthly preventive maintenances and daily monitoring of measured data were systematized. Confidence intervals calculated by a statistical method using accumulated data were applied to data management. Such activities could minimize discontinuance of measurement and keep information more trustful. In addition, the system has various ways of data distribution. Through homepage and e-mail in the internet, information was provided to public. Display units which were connected to equipments at the farm gave the measured data directly to fishermen, which guided them to run their farm scientifically. Finally large display unit was installed at a fish market and showed the measured data at the nearest station with tide and weather information. Proper region for aquaculture and wintering region were studied using temperature data obtained by the system in 2006. The system will contribute to reduce economic damage of coastal fishery and to understand coastal marine environment.

  • PDF

Evaluation of Waterway Dredging Work using Spud Dredge Process Management System (스퍼드 준설선 공정관리시스템을 이용한 항로준설작업의 평가)

  • Lee Joong-Woo;Jeong Dae-Deuk;Cho Jueng-Eon;Kim Ju-Young;Oh Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.395-402
    • /
    • 2005
  • The most important point when we engage on waterway dredging work is supplying safe navigational passage to the vessels underway by narrowing dredge work area and removing submerged dangers. In order to meet this end it is necessary to use auxiliary equipment for shifting actively and mooring and adopt automation of dredging work by integrating information on real time position, dredging depth, and work information. The dredger with a spud control system in this study, by the way, is able to employed on continuous dredging work with the narrowest working area allowing wide and safe passages to vessels underway, by moving the dredger to the working zone with the spud controlled automatically. Furthermore, it has been improved definitely compared with the existing dredging process management system such that it shows the track of spud and working depth on the electronic navigation chart of window, together with the final outcome of dredging work. The test dredging work at the entrance of Busan North Port for system evaluation showed that actual working time available was twice of the one by the existing anchor system, and that it reduced $38\%$ of time for preparation work and one man power.

Flow Characteristics and Wind Loads on the Solar Panel and Floating System of Floating Solar Generato (부유식 태양광 발전기의 패널과 부유체에 작용하는 풍하중과 유동특성)

  • Ryu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.229-235
    • /
    • 2019
  • A floating photovoltaic generation system is a new concept that combines existing photovoltaic generation technology with floating technology. This is installed in the water not on conventional land and a building. The system is designed as a unit module type that can be connected to other modules according to the power generation capacity, thereby forming a large-scale power generation facility. As a renewable energy source, it is composed of a floating structure, mooring device, photovoltaic power generation facility, and underwater cable. Because this system is installed outdoors, the effect of the wind load on the structure is very large. In this study, the wind loads most affected on the floating photovoltaic generation structure were obtained by computational fluid dynamic analysis. The flow characteristics and wind loads were analyzed for a range of wind orientations and angles of inclination. The analysis showed the position and magnitude of the maximum wind load to the wind direction and the flow characteristics around the solar panel and floating system. The wind load increased with increasing angle of inclination of the panel to the ground.

Study on the Characteristics of Thrust and Torque for Partially Submerged Propeller (부분 침수 프로펠러의 bollard pull 추력 및 토오크 특성 연구)

  • Park, H.G.;Lee, T.G.;Paik, K.J.;Choi, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.264-272
    • /
    • 2011
  • Shipbuilders carry out the operation test to check the conditions of the main propulsion system and auxiliaries for moored vessel in the quoy before the sea trial. The estimation of the thrust and torque for the partially submerged propeller should be prepared to ensure the safety of mooring line and the ship. In this paper, the variations of the thrust and torque according to the shaft submergence and the propeller rotating speed in bollard pull condition are investigated with the model test and the numerical analysis. Based on these resaearch, the empirical formula representing the physical phenomena of the partially submerged propeller is derived and validated through comparison to measurement results of full-scale propellers under the quoy operation test.