• Title/Summary/Keyword: mood-based music services

Search Result 3, Processing Time 0.017 seconds

Brainwave-based Mood Classification Using Regularized Common Spatial Pattern Filter

  • Shin, Saim;Jang, Sei-Jin;Lee, Donghyun;Park, Unsang;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.807-824
    • /
    • 2016
  • In this paper, a method of mood classification based on user brainwaves is proposed for real-time application in commercial services. Unlike conventional mood analyzing systems, the proposed method focuses on classifying real-time user moods by analyzing the user's brainwaves. Applying brainwave-related research in commercial services requires two elements - robust performance and comfortable fit of. This paper proposes a filter based on Regularized Common Spatial Patterns (RCSP) and presents its use in the implementation of mood classification for a music service via a wireless consumer electroencephalography (EEG) device that has only 14 pins. Despite the use of fewer pins, the proposed system demonstrates approximately 10% point higher accuracy in mood classification, using the same dataset, compared to one of the best EEG-based mood-classification systems using a skullcap with 32 pins (EU FP7 PetaMedia project). This paper confirms the commercial viability of brainwave-based mood-classification technology. To analyze the improvements of the system, the changes of feature variations after applying RCSP filters and performance variations between users are also investigated. Furthermore, as a prototype service, this paper introduces a mood-based music list management system called MyMusicShuffler based on the proposed mood-classification method.

Multimedia Contents Recommendation Method using Mood Vector in Social Networks (소셜네트워크에서 분위기 벡터를 이용한 멀티미디어 콘텐츠 추천 방법)

  • Moon, Chang Bae;Lee, Jong Yeol;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.11-24
    • /
    • 2019
  • The tendency of buyers of web information is changing from the cost-effectiveness to the cost-satisfaction. There is such tendency in the recommendation of multimedia contents, some of which are folksonomy-based recommendation services using mood. However, there is a problem that they does not consider synonyms. In order to solve this problem, some studies have solved the problem by defining 12 moods of Thayer model as AV values (Arousal and Valence), but the recommendation performance is lower than that of a keyword-based method at the recall level 0.1. In this paper, we propose a method based on using mood vector of multimedia contents. The method can solve the synonym problem while maintaining the same performance as the keyword-based method even at the recall level 0.1. Also, for performance analysis, we compare the proposed method with an existing method based on AV value and a keyword-based method. The result shows that the proposed method outperform the existing methods.

User's Context Reasoning using Data Mining Techniques (데이터 마이닝 기법을 이용한 사용자 상황 추론)

  • Lee Jae-Sik;Lee Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.122-129
    • /
    • 2006
  • The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.

  • PDF