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Abstract 
 

In this paper, a method of mood classification based on user brainwaves is proposed for 

real-time application in commercial services. Unlike conventional mood analyzing systems, 

the proposed method focuses on classifying real-time user moods by analyzing the user’s 

brainwaves. Applying brainwave-related research in commercial services requires two 

elements - robust performance and comfortable fit of. 

This paper proposes a filter based on Regularized Common Spatial Patterns (RCSP) and 

presents its use in the implementation of mood classification for a music service via a wireless 

consumer electroencephalography (EEG) device that has only 14 pins. Despite the use of 

fewer pins, the proposed system demonstrates approximately 10% point higher accuracy in 

mood classification, using the same dataset, compared to one of the best EEG-based 

mood-classification systems using a skullcap with 32 pins (EU FP7 PetaMedia project). This 

paper confirms the commercial viability of brainwave-based mood-classification technology. 

To analyze the improvements of the system, the changes of feature variations after 

applying RCSP filters and performance variations between users are also investigated. 

Furthermore, as a prototype service, this paper introduces a mood-based music list 

management system called MyMusicShuffler based on the proposed mood-classification 

method. 
 

 

Keywords: Mood classification, Electroencephalography (EEG), Regularized Common 
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1. Introduction 

Human moods do not follow structured patterns. Moods vary temporally, and are inherently 

ambiguous. Mood classification results vary quite substantially between human annotators. 

Moods are expressed and perceived over multiple modalities. As a result, EEG-based mood 

classification systems have not achieved high accuracies despite involving lesser mood 

classes. 

In the mood related studies, the Audio Music Mood Classification (AMC) tasks are 

annually held in Music Information Retrieval Evaluation eXchange (MIREX) [1]. AMC task 

evaluates music audio classification algorithms. MIREX 2013 published that the best accuracy 

obtained was 66.33% for this task involving five mood clusters (cluster 1: passionate, rousing, 

confident, boisterous, rowdy. cluster 2: rollicking, cheerful, fun, sweet, amiable/good natured, 

cluster 3: literate, poignant, wistful, bittersweet, autumnal, brooding. cluster 4: humorous, silly, 

campy, quirky, whimsical, witty, wry. cluster 5: aggressive, fiery, tense/anxious, intense, 

volatile, visceral) [2]. Mood classification was evaluated using speech. In this evaluation, a 

speech mood classification system detected moods from speech signals. An HMM based 

speech mood classification system showed a 54.3% accuracy across  five mood classes - 

excitement, frustration, happiness, neutral, and sadness [3]. 

A Brain-Computer Interface (BCI) system is aimed at directly controlling a machine using 

a human brain signal. A typical BCI system calibrates the neural activities of the brain and 

builds a classification model to generate a command. Electroencephalography (EEG) is the 

recording of electrical activity along the scalp and is widely used as the measurement of the 

neural activities in a noninvasive BCI system. Owing to its usability, numerous research and 

competitions have been conducted to build a robust classification model for BCI tasks [4]. 

The non-stationary nature in EEG data has been studied in related researches. Even if a 

subject performs the same task under the same conditions, the EEG data may indicate a 

significant variation compared to those acquired during a different session owing to the 

subject’s cerebral condition including stress, emotion, hormones, subject attention, and fatigue 

[5]. EEG data analyzing techniques consider defects arising from noise and undesirable 

signals. 

In this paper, we propose an EEG data classification technique to determine a user's 

real-time moods to overcome this limitation. This paper also proposes a preprocessing 

technique for EEG-based mood classification. Because of the low spatial resolution of EEG 

data, spatial filtering is often used to facilitate the extraction of useful features for BCI. Spatial 

filtering applies a linear combination to the channels. The system proposed in this paper 

utilizes Regularized Common Spatial Patterns (RCSP) as a preprocessing filter prior to mood 

classifications using EEG data [6]. The experimental results demonstrate that the RCSP filter 

successfully alleviates the non-stationarities of brainwave signals, especially in the extraction 

of long-term patterns. 

In this work, performance variations between pin positions and users are further 

investigated to analyze improvements of the proposed system. These discussions of the 

experimental results also reflect the status of BMI technology for mood related services. 

The proposed service, MyMusicShuffler, uses personalized user-mood models to 

recognize positive and negative moods based on the real-time brain signals received from the 

user. The objective of MyMusicShuffler is to maximize user convenience by allowing a user 
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to enjoy music without interruption or stress [7]. After analyzing the user’s mood using these 

personalized mood models, this system automatically updates the music playlist. The music 

entries in the music list in this system are classified to a positive mood based on brainwaves. 

As such, it precludes the use of heavy devices for the acquisition of brainwaves; instead, 

wireless devices are utilized. EEG is the recording of electrical activity along the scalp. 

Compared to the devices used in previous mood analysis systems, consumer EEG devices are 

wireless and convenient, thus enhancing the applicability of the proposed EEG-based system 

for commercial purposes. 

The remainder of this paper is organized as follows. In Section 2, previous studies on mood 

classification based on brainwaves are discussed. In Section 3, the proposed mood 

classification system is introduced. In Section 4, data acquisition and other experimental 

conditions are outlined and the mood-classification results are analyzed. Section 5 introduces a 

prototype service, MyMusicShuffler, which applies the proposed mood-classification 

techniques to a music service application. Finally, Section 6 concludes this paper. 

2. Previous Works 

In the fields of medical science and psychology, numerous brain functions have been 

investigated using neuroimaging technologies including functional magnetic resonance 

imaging [8], positron emission tomography [9], and magnetoencephalography [10]. These 

technologies require expensive equipments and experts who collect and analyze the 

information. Consequently, applications for brain-information systems have been developed 

primarily in hospitals and research centers. 

2.1 Brain Computer Interfaces Based on EEG Data 

An important advance is the evolution of EEG acquisition devices. Although EEG skullcaps 

guarantee relatively stable and sufficient information with multi-channel signals, they are not 

appropriate for applications in commercial services. Because wearing a skullcap is time 

consuming and users should endure the uncomfortable design, user-friendly, and low cost 

EEG devices (e.g., headsets or headband-style devices) have recently become available on the 

market [11]. 

Many relatively lower cost devices have been introduced using EEG data [12-14]. EEG 

represents the voltage fluctuation resulting from ionic current flows within the neurons in the 

brain. EEG resolution is lower than that of the above-mentioned methods. The EEG sensors 

are located on the scalp of the user. Although EEG data suffer from this relatively poor 

sensitivity compared to other brain information, these devices remains popular because its 

hardware costs are significantly less than those of the above-mentioned techniques [15]. To 

obtain accurate EEG data, the sensors must be local positions and the pressure between the 

sensors and the scalp should be maintained at a constant level. Many devices, called EEG 

skullcaps, have been designed in a skullcap style. 

 Performance comparisons between a skullcap and a headset-style EEG device were 

presented in a P300 speller domain. A P300 wave occurs when a desired target is observed. 

The P300 speller presents an n-by-n matrix on a monitor. One of the letters flashes randomly. 

If it is a letter desired to be written, a P300 wave appears. The difference in accuracy between 

an EEG skullcap and EEG headset with the same EEG classifier was measured as 4.77% and 

6.12% in sitting and walking conditions, respectively [16]. However, the BMI techniques for 

the P300 speller involve recognition of the instantaneously evoked potential signals in an EEG. 

http://en.wikipedia.org/wiki/Neurons
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Electroencephalography#cite_note-Niedermeyer-1
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Analyzing long and continuous patterns is necessary in the process of classifying moods. 

Therefore, various discussions on the experimental results are necessary for their application 

to a mood-based mood related systems. 

Another important advance in EEG classification is using spatial filters. EEG classifiers 

extract features from the multiple signals based on the neighboring pins simultaneously. In this 

process, there exist redundant and correlated semantics between the signals from neighboring 

pins. To solve this problem, multiple spatial filtering techniques are applied in EEG 

classifications. Bipolar [17] and Laplacian filters [18] have reported that these techniques can 

emphasize the localized activity and reduce the diffusion of spatial activity. Recently, 

Common Spatial Pattern (CSP) filters have been applied in the Motor Imaginary (MI) domain 

[19]. These are designed to identify spatial projections that maximize the power/variance 

ratios of the filtered signals for two classes [20]. In particular, CSP-based filters have proven 

their superiority over other filters, having recorded 7 to 9% accuracy improvements in Motor 

Imaginary classifications and P300 spellers. 

2.2 Mood Classification Based on EEG Data 

In the case of EEG-based mood-classification systems, many advances have been made 

using different machine-learning techniques [10-12], [21]. However, their performance varies 

significantly according to the mood classes and EEG data acquisition environments. 

Mood-classification performance demonstrated a 93% precision when 60 pins of EEG 

acquisition points on a skullcap were used; however, the system recorded only a 35% 

precision in four pins for the mood classes defined as 'asleep', 'awake', and 'other' [10], [22].  

Mood-classification performance using an EEG skullcap was evaluated using neural 

network [11]. In this research, EEG data were collected from 68 EEG sensors while 

participants listened to original sound tracks with four different moods ('joy', 'anger', 'sorrow', 

and 'relaxation'). The mood-classification accuracies were measured as 54.5%, 67.7%, 59.0%, 

and 62.9% for 'joy', 'anger', 'sorrow', and 'relaxation', respectively. The Bayes classifier was 

applied to classify three levels of arousal [23]. In this research, an accuracy of 58% was 

recorded when 37 signals were used: 32-channel EEG data from a skullcap, galvanic skin 

response [24], blood pressure, heart rate, respiration, and temperature. However, in this study, 

only the arousal level of the user in the mood space was measured and not the actual emotional 

state. Therefore, the system could not measure more complex responses. 

Binary moods are abstract and comprise combination of many emotions [25]. For example, 

the emotions such as anger and fear, popularly referred to as 'negative', have 'negative valence' 

[26-27]. Therefore, binary mood classification systems cannot always be expected to yield 

high accuracies. An SVM-based binary mood classification has been performed, which 

involved measuring EEG signals while listening to Chinese pop songs; its highest accuracy 

was 72.21%  [28]. Another representative mood-classification research using an EEG skullcap 

was the EU FP7 PetaMedia project [15]. In this research, the user preference for a given music 

video clip was identified in binary-mood classes (positive or negative) using 32-channel EEG 

data and additional features. This project utilized a Dataset for Emotion Analysis using EEG, 

Physiological, and video signals (DEAP) [22], which acquires EEG and peripheral 

physiological signals when the user views music video clips. The binary-mood classification 

achieved an accuracy rate of 70.25% when a Support Vector Machine (SVM) classifier with 

radial basis function (RBF) kernels using 32-channel EEG data.  

 

https://en.wikipedia.org/wiki/Anger
https://en.wikipedia.org/wiki/Fear
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3. Mood Classification Using EEG Signals 

3.1 Mood-based services and EEG 

The proposed EEG-based mood-classification system identifies the user’s emotional state by 

analyzing the received EEG signals as the user listens to music. The mood classifier shows the 

positive or negative mood of a user while listening to a music clip. By applying this technique, 

this paper proposes a mood-based music list management service. Music clips indicating a 

positive mood are recommended to the users. Music clips classified with a negative mood in 

the EEG-based mood classifier are changed to different music items according to user's policy: 

Random selection or music items within the user's favorite list. If a new item is not contained 

in a user's favorite music list, the newly determined positive music is added to the user's 

favorite list. The proposed EEG-based music service has several advantages compared to other 

music services. First, the proposed service can respond to a user’s real-time emotional state 

because the EEG data reflect the real-time emotional response of the user. Second, BMI is one 

of the best methods for analyzing man-machine interaction in multi-tasking environments. 

Users typically listen to music as they perform other activities such as working, exercising, or 

reading. The proposed system is based on a stress-free and hands-free interface that requires 

no direct user interaction. 

3.2 Mood Classification by Analyzing EEG Data 

Fig. 1 illustrates the process of the proposed mood classification using EEG. The brain feature 

extractor receives the time-domain EEG data from the wireless EEG acquisition device. In this 

experiment, the Emotiv EPOC is used [29]. This device was verified as the best EEG headset 

among 13 available EEG headsets in the usability test [21]. 
 

 
Fig. 1. Process of mood classification using EEG 

 

This study uses EEG data for the real-time detection of the user’s mood. The 10–20 

international system is the standardized electrode placement of the American 

Electroencephalographic Society and an internationally recognized method for describing and 

applying the locations of scalp electrodes in the context of an EEG test or experiment [30]. 

Each site has a letter that identifies the lobe and a number that identifies the hemisphere. The 
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'10' and '20' refer to the fact that the actual distance between adjacent electrodes is either 10% 

or 20% of the total front–back or right–left distance of the skull [30]. This system ensures 

acquisition of the stereotypical signals based on the relationship between the location of an 

electrode and the underlying area of the cerebral cortex. 

The 14 EEG acquisition points in EPOC are illustrated in Fig. 2. The EEG collector gathers 

the continuous multi-channel signals and then transfers these to the brain feature extractor 

through a wireless connection. As indicated in Fig. 2, the system continually acquires signals 

from the 14 pins including two references as the user listens to the music items and categorizes 

them based on the pin positions. 

 The brain feature extractor receives the power spectra from these bands after employing a 

RCSP preprocessor and a Fast Fourier Transform (FFT) of the 14 EEG data in a window of 

eight seconds. FFT is a popularly simple and fast method for signal processing and the most 

widespread method in EEG data processing. FFT is not a separate transform; rather, it is an 

efficient algorithm for computing the Discrete Fourier Transform (DFT) of a sequence. It is 

useful in signal processing of EEG data, where it uses range from filtering and frequency 

analysis to power spectrum estimation [31]. 

 

AF4AF3

F7

F3 F4
F8

FC5 FC6

T7

P7

P3 P4

O1 O2

10%

20%

10%

20%

T8

P8

 
Fig. 2. Map of EEG electrode sites in EPOC device based on the 10-20 international system. The 10-20 

international system was standardized by the American Electroencephalographic Society [30] 

 

In the RCSP filter, the EEG signals are estimated to reduce the diffusion because of spatial 

activity among the signals. The applied RCSP filter encodes the most discriminative 

information from multiple signals [6]. Due to the smearing effect of the skull, the underlying 

source signal is spread over several channels. RCSP is useful in recovering the original source 

signal. 

The brain feature extractor in Fig. 1 analyzes the signals to extract the necessary features 

for the mood classification. EEG signals are typically described in terms of rhythmic activity. 

The rhythmic activity is divided into frequency bands. The representitive of the cerebral 

signals observed in a scalp EEG is in the range of 1-20 Hz when its clinical recording 

techniques are used [32]. 
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Table 1. Representative cerebral frequency bands and their corresponding frequency ranges 

Frequency Band Frequency Range (Hz) 

Delta (δ) 0-4 

Theta (θ) 4-7 

Alpha (α) 7-13 

Beta (β) 13-30 

Gamma (γ) 30-50 

 

The EEG sampling rate of the Emotive EPOC is 128 Hz [29]. The window length for the 

512-point FFT of the received EEG data is eight seconds, and the shift period is 8.7 ms [10], 

[33]. In the band cluster of the brain feature extractor, the power spectra of the EEG data are 

assessed in five frequency bands, as indicated in Table 1 [15] [26-27], [33-34]. 

 

 
Fig. 3. Process of feature extraction from EEG data. Five band energies extracted from each EEG signal 

constitute the feature vector for their corresponding window. 

 

The process of feature extraction is illustrated in Fig. 3. p and t denote a pin index (1 ≤ p ≤ 

14) and a window index (1 ≤ t ≤ T. T: the total number of windows in an acquired EEG signal), 

respectively. Eδ(t, p) is defined as the δ band energy in the t-th window from the p-th pin. In a 

similar manner, Eθ(t, p), Eα(t, p), Eβ(t, p), and Eγ(t, p) are defined. fvt' is defined as the set of the five 

band energies from the 14 pins in the t-th window. Consequently, the dimension of fvt' is 70. 

The set of feature vectors FV for mood classification in MyMusicShuffler is presented as: 

 

                                                                   

),,,,,,,,,,( )14,()14,()14,()14,()14,()1,()1,()1,()1,()1,(

'

ttttttttttt EEEEEEEEEEfv     (1) 

 

The proposed EEG mood classifier gathers fvt' for 15 seconds, while a user listens to a 

music clip. The set of FV for a song is separated with 1,724 fvt', which are based on an eight 

second window and 8.7 ms shift period. Each fvt' is classified as a 'positive' or 'negative' mood 

class using the user’s personal mood model. Mood-classification results for a music clip are 

counted and the EEG music recommender determines the dominant emotional mood as the 

 '''

1 ,,,, Tt fvfvfvFV 
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most frequently counted mood for the music clip. 

MyMusicShuffler constructs a personalized mood model for a single user. To construct the 

personal mood model, EEG data while listening to music are collected. A user listens to music 

clips and annotates each music clip with his or her preference on four levels (1-4, where four is 

a strong preference). Level 1 and 2 are classified as the 'negative' mood class and the other 

levels are categorized as the 'positive' mood class. fvt' for each music clip is scattered to 70 

dimensional space with the corresponding mood classes. An SVM with an RBF kernel is 

applied to classify these two mood classes [35]. 

3.3 RCSP Filter based EEG Signal Estimation 

To extract the normalized spectral features from 14-pin EEGs, we propose the feature 

estimation applying a spatial filter technology. Because of the low spatial resolution of EEGs, 

spatial filtering can be used to facilitate the extraction of the useful features for BCI 

classification. Common Spatial Pattern (CSP) is a supervised method to find spatial filters. 

This technique finds a direction vector which maximizes the variance of band-passed EEG 

signals from one class while minimizing the signal variance of another class [6]. CSP based 

filters still show the sensitivity to noise and over-fitting to the applied samples. To overcome 

this sensitivity, this paper applies Regularized CSP (RCSP) among the several CSP variants 

[6]. 

   Si is an EEG signal matrix for class i, with EEG channels as columns and time samples as 

rows. An average spatial covariance matrix of Si, is represented by Ci, i ∈ {1, 2}. In this paper, 

classes are aligned with a positive and a negative emotion. To find CSP based filters, a spatial 

filter ŵ  is determined by Equation (2) such that the variance of the filtered signal becimes the 

maximum for one class and the minimum for the other class. 
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The maximization problem of Equation (2) is solved as a generalized eigenvalue problem 

by Equation (3). The eigenvector w corresponding to the maximum eigenvalue is the direction 

vector. This direction vector w is a spatial filter for Si and w
-1

 is called a common spatial 

pattern for Si.. 

 

wCwC 21                                                                       (3) 

 

RCSP uses a regularization framework to penalize undesired solutions by two user-defined 

regularization parameters. This paper applies Tikhonov Regularization CSP algorithm [36], 

which is expressed as: 
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Where 
iC

~  is the regularized Ci , and I is a identity matrix whose size is N by N. In this 

process, α and β are user-defined regularization parameters (0 ≤ α, β ≤ 1). 1ˆ 

Iw  is a common 

spatial pattern for Si. This regularization is able to constrain the influence of outliers in the 
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solution of filters. In this RCSP feature extraction, input EEG signal Si is projected as in 

Equation (5). 
iŜ  is the input of FFT module in brain feature extractor in Fig. 1. 

 

iIi SwS 1ˆˆ                                                                        (5) 

 

The RCSP is a suitable filter for reducing the variance associated with sample-based 

estimates. Noisy EEG data from the wireless EEG acquisition headsets can also be normalized 

by using RCSP filter. 

4. Experiments 

4.1 Experimental Setup 

To evaluate the proposed method, two kinds of EEG evaluation datasets for mood 

classification, DEAP and KETI EEG datasets, were used. The age and gender distribution of 

the participants is listed in Table 2. 
 

Table 2. Participant age and gender distribution in the applied EEG data sets 

Age 

Number of Participants 

DEAP KETI EEG 

Male Female Male Female 

10s - 1 - - 

20s 10 12 3 2 

30s 7 2 4 3 

40s - - 1 - 

Total 17 15 8 5 

 

4.1.1 Construction of DEAP 

The DEAP was developed in the EU FP7 PetaMedia project [22]. Thirty-two people 

participated in the preparation of the DEAP. While each participant watched 40 music video 

excerpts of one-minute duration each, 32-dimensional EEG signals using 10-20 international 

system [30] and various peripheral physiological signals - Galvanic skin response (GSR) [24], 

respiration amplitude, skin temperature, electrocardiogram (ECG) [37], blood volume by 

plethysmograph, electromyograms of Zygomaticus and Trapezius muscles (EMG) [37], and 

electrooculogram (EOG) [17], skin temperature and respiration - were collected. The 

annotated results for binary mood are contained in this dataset. 

4.1.2 Construction of KETI EEG Dataset 

The KETI EEG dataset was constructed for mood classification in this research. The EEG data 

and feedback related to the selected music items were collected. A music corpus, KETI 

AFA2000, which contains approximately 2,400 Korean pop mp3 clips, was used [38]. 

Thirteen subjects participated in this construction. Each participant reviewed the music list by 

listening to clips of 30-second duration and selected his or her ten favorite clips and ten least 

favorite clips from the KETI AFA2000 corpus. Because the objective of this experiment was 
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to demonstrate the effect of audio stimuli on EEG data without visual stimuli, the participants 

only listen to music clips in this experiment.  The mood-modeling module gathered the EEG 

responses while the participants listen to the selected clips. One-minute EEG data were then 

extracted from the twenty clips. These clips of the selected items were played from the 

beginning of the song to the one-minute mark. First, the participants listened to their ten 

favorite music clips; then, they listened to their ten least favorite music clips. The extracted 

dataset consisted of approximately 280 EEG signals of one-minute duration from the 13 

participants.  

For the EEG acquisition, an Emotiv 14-pin, wireless EEG headset was used [29]. This 

headset is designed to use the 14 specific sensor positions identified in Fig. 2: AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. Because the device acquires 

multi-channel EEG data wirelessly, users felt more comfortable during the EEG acquisition 

process compared to a situation where wired devices were used. 

The signal acquisition space was restricted to a single room to maintain the same speaker 

systems and illumination conditions. The EEG acquisition room was equipped with 

soundproof walls, a light control system, quality stereo speakers, and a comfortable chair. Fig. 

4 illustrates the room and the EEG device setup in this room. 
 

 
Fig. 4. EEG data acquisition room and EEG device setup 

 

4.2 Experimental Results 

This section presents the performance evaluation of the EEG mood classifier by measuring the 

mood-classification accuracies. The accuracy is defined in the ratio of the correctly detected 

results by the evaluated system to the total number of samples examined [39]. In the 

experiments, the accuracies were measured using a ten-fold cross validation method. Table 3 

summarizes the results. Accuracy is used by a performance measure in this paper.  

The proposed system achieved an accuracy rate of 83.01% when the classifier used all data 

from the KETI EEG dataset from the 14 pins. In particular, when using the RCSP spatial filter 

before the SVM classifier is applied, there was a remarkable improvement in the performance. 

The performance comparison with the EU FP7 PetaMedia project using the DEAP is also 

described in Table 3. The EU FP7 PetaMedia project reported an accuracy of 70.25%  [22]. In 

the experiments, two mood classifiers were constructed using all of the 32 EEG signals and 14 

signals corresponding to the pin positions indicated in Fig. 2. The accuracy of the mood 
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classifier for the proposed system by applying the SVM only was 65.63% with 14 pins and 

68.89% with 32 pins. These performances were slightly lower than the system introduced in 

the EU FP7 PetaMedia project, because the proposed method uses only a subset of the EEG 

features in the DEAP. In Table 3, the performance of the proposed classifier by applying the 

SVM and RCSP filter was shown to be 80.55% with 14-pin EEG data and 82.4%  with 32-pin 

EEG data, respectively. The proposed system showed superior performance compared to the 

classifier in the EU FP7 PetaMedia project [17]. Because the performance from EU FP7 

PetaMedia project system did not apply the RCSP filters, the results confirm that the classifier 

with an RCSP filter is suitable for mood classification even though the applied EEG data is 

constructed with lesser number of channels.  
 

Table 3. Evaluation results 

Data System Feature Accuracy (%) Remarks 

 

 

 

 

 

D 

E 

A 

P 

SVM 

14-pin EEG data 65.63 
The pin positions are 

the same as in Fig. 2. 

32-pin EEG data 68.89 

Part of 32 pins in 

64-pin of 10-20 

international system are 

used [29]. 

RCSP-SVM 

14-pin EEG data 80.00 
The pin positions are 

the same as in Fig. 2. 

32-pin EEG data 82.4 

Part of thirty two pins 

in 64-pin of 10-20 

international system are 

used [29]. 

EU FP7 

PetaMedia project 

system [17] 

Thirty two-pin + 

physiological features + 

audio-visual features 

70.25 
All features in DEAP 

are used. 

KETI 

EEG 

SVM 14-pin EEG data 81.07  

SVM-RCSP 
14-pin EEG data after 

RCSP filtering is applied. 
83.02  

 

The EEG data in the DEAP were captured by applying both audio and visual stimuli while 

watching music video clips, but the KETI EEG dataset did not use the visual stimuli; the 

subjects only listened to the audio clips. The experimental results indicate that the proposed 

system can achieve robust performance only with audio stimuli. 

To analyze the effectiveness of the proposed method, the analysis of effect by using RCSP 

filtering in EEG signals is explained in Section 4.2.1 and the experimental results of 

performance variation among users is discussed in Section 4.2.2. 

4.2.1 Effect analysis of RCSP filtering in EEG signals 

The results of the feature distribution patterns after applying RCSP filters in EEG 

classifications are shown in Fig. 5. Sample EEG signals from three pins for a participant in 

each evaluation dataset are selected. The participants recording the best increase in accuracy 

when applying RCSP filters from two datasets are assigned to the sample participants. A 

sample in these datasets contains 14 signals, however, to represent the dimensions in 3D, three 

dimensions are selected (DEAP: F7, F4, and T8; KETI EEG dataset: AF3, F7, and F8 in Fig. 

2) per sample participant as dimensions in Fig. 5. The selected three dimensions show the best 



818                                     Saim Shin et al.: Brainwave Based Mood Classification Using Regularized Common Spatial Patern Filter 

accuracy improvements after RCSP filtering, in the experimental results, for each participant 

when constructing single-pin based mood classifiers. From the sample signals, the sums of 

δ-band energies are extracted and scattered in each graph; the selected pins from each signal 

decide the dimensions in each graph. The scattered band in this figure is decided based on the 

feature value that is the lowest band among the introduced five frequency bands in Table. 1, in 

order to reduce the unit of the graphs considering expressiveness of the graphs. The changes of 

feature areas after applying RCSP filtering are represented in these feature dimensions. The 

graphs in (a) are the analyzed results for DEAP and the graphs in (b) are sampled feature 

dimensions from KETI EEG dataset. The coordinate axes of the two graphs in Fig. 5 are 

expressed using different scales because the EEG signals in two datasets were acquired by 

using two different EEG devices that show different responsiveness. The colored points in 

each graph represent the distributions of δ-band energies of each time point from the signals. 

The blue and green points mean the sampled δ-band energies of the features obtained from the 

signals using RCSP filters and the features of the signals obtained without RCSP filters, 

respectively. The effects of RCSP filters were demonstrated in Fig. 5 by comparing the 

distributed areas of δ-band energies. 

 

   
Fig. 5. Distributions of energies in δ-band after applying RCSP filtering in feature dimensions 

 

In these results, the blue points show lower variance of feature distributions than the green 

points. By referencing in Equation (2), RCSP based filters are selected in order to maximize 

the variance of the filtered signals. Based on the assumption of this filter, in the experimental 

results, the significant decrease of the variances in feature distributions are proven in Fig. 5. 

The sparse areas need a more complex feature space with frequent regression cases compared 

to the dense area in the machine learning stage of SVM. This implies that the changed feature 

areas can be successfully detected in the machine learning stages. Therefore, this result 

demonstrates that the proposed RCSP based filter effectively retrieves the hidden semantics 

from EEG signals to the feature dimensions for EEG mood classification. Moreover, RCSP 

filtered feature areas tend to change linearly. These patterned feature dimensions by RCSP 

filters support the successful classifications with the kernel functions in SVM. Therefore, the 

performance improvement in the proposed mood classification methods based on RCSP filters 

and SVM is observed. This result also implies that RCSP filtering provides a robust increase in 

the performance of the mood classification systems by effectively reducing the feature 

dimensions as a preprocess module. 
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4.2.2 Analysis of performance variation between users 

To analyze the performances by applying RCSP filters between users, the mood-classification 

results for all the participants from the two evaluation datasets are shown in Fig. 6. 
 

 
 

Fig. 6. Mood-classification accuracies for each participant. The total number of participants depicted in 

these graphs is 45. 14 dots in the left graph represent the accuracies for the KETI EEG dataset, and the 

31 dots in the right graph present the accuracies for the DEAP. All results were measured with the 

classifier using all signals from the 14 pins. 

 

The two graphs in Fig. 6 show the performance changes after applying the RCSP filter. In 

each graph in Fig. 6, the dotted lines represent the accuracies of the mood classifications while 

applying only the SVM. The solid lines show the distributions of the performances when 

applying the SVM after the RCSP filter. In Fig. 6, when using RCSP filters, the more the 

number of recorded improvements, the lower the accuracies are shown when only applying 

SVM. By comparing the differences in these changes, it can be seen that applying RCSP filter 

improves the performances for cases with low accuracies as compared to the cases with high 

accuracies. The differences indicate that the RCSP filter is an effective preprocessor for 

extracting hidden semantic layers for mood classification. Therefore, RCSP filter-based 

preprocessing modules can guarantee robust performances by reducing the performance gap 

that exists between the results for various participants in EEG based mood classification 

systems. 

5. MyMusicShuffler: A Prototype Service Based on Mood Analysis 

This paper introduces a new prototype automatic music shuffling service by applying the 

proposed mood-classification technique. The BMI developed for MyMusicShuffler is 

designed for user comfort. Fig. 7 displays the system architecture for the prototype. The 

proposed service, MyMusicShuffler, uses personalized user-mood models, which recognize 

positive and negative moods based on the real-time EEG data received from the user. The 

objective of MyMusicShuffler is to maximize user convenience by allowing the users to enjoy 

music without interruption or stress [4]. After analyzing the user’s mood using these personal 

mood models, the system automatically updates the music playlist. The music items on the 

music list in the system are classified by mood based on the EEG. Because signal acquisition is 
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based on wireless devices, the use of heavy devices is avoided. 

 

 

Fig. 7. System architecture of MyMusicShuffler. T7 and FC5 pins are the pin positions in the 10-20 

international system [30]. 

 

The implementation of the proposed music service are displayed in Fig. 8. The proposed 

UI supports the following scenario. Based on the dominant mood determined by the 

binary-mood classifier, the EEG mood classifier manages the user’s playlist without the 

requirement for user interaction. Users can change the settings to allow the music to be limited 

to the items in a given playlist or to be selected randomly from the entire library. If the 

classification result from the user’s EEG is negative when the user listens to a particular music 

item, that item is removed from the playlist. If the result is positive, the system saves the item 

in the playlist. The mode of 'starting music item' in this interface can be randomly selected 

from all music items or each user's previously positive music items based on each user’s 

choice. 

The prototype interfaces in Fig. 8 suggest music video clips related to user’s favorite music 

items. However, in the process of generating the models, the video stimuli are not applied. 

Therefore, the proposed method can be applied to different audio-based services. 

MyMusicShuffler was constructed for a client/server system. The client module gathers the 

EEG data and delivers the signals to the server. The client module indicates the classification 

results graphically to the user and manages the playlist. The mood modeler and the EEG music 

recommender on the server train the mood models, classify the mood, and deliver the updated 

list to the client. 

 
Fig. 8. Implementation results of MyMusicShuffler. 
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6. Conclusions 

In this paper, mood classification using user brainwaves is proposed. The proposed RCSP 

based algorithms achieved an overall accuracy of 83.4% in the binary mood classification for 

the KETI AFA2000 music corpus. The performance of MyMusicShuffler was higher than one 

of the best EEG-based mood-classification systems (the proposed: 83.4%, EU FP7 PetaMedia 

project: 70.25%), despite the use of only audio stimuli and simple features. 

For further analysis, effect of RCSP filters in feature dimensions and performance variations 

between different users were investigated. In these experimental results, RCSP filter is a 

successful preprocessing module to increase the accuracies of mood classification by 

decreasing the feature variations including same class. RCSP filter-based preprocessing 

modules can also guarantee the robust performances by reducing the performance gap existing 

between the results for various participants. The prototype music list management system, 

MyMusicShuffler, was implemented based on the proposed mood-classification technique using EEG 

data. Conventional music services primarily consider metadata generated in the past, whereas the 

proposed system focuses on real-time user moods based on user brainwave analysis for managing music 

lists. 
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