• Title/Summary/Keyword: montmorillonite.

Search Result 372, Processing Time 0.038 seconds

Flocculation Behavior and properties of Montmorillonites Mixed with Organic Polymer Solutions (유기폴리머 용액에 혼합한 몬모릴로나이트의 응집 거동 및 특징)

  • 황진영
    • Economic and Environmental Geology
    • /
    • v.32 no.3
    • /
    • pp.307-315
    • /
    • 1999
  • Four organic polymers were mixed with mothmorillonite. Two cationic polymers a hi로 molecular weight polyacrylamide (494C) and a low molecular weight polymer (587C).Two anionic polymers include a high molecular weight polymer (aerotil). Each clay supension series were allowed to stand for 24 hours and were centrifuged, and the clay plugs were washed and dried. The dried samples investigated by XRD, IR and CEC measurement. The suspended clay containing anionic polymers was not flocculated at any concentratuons of polymer. But the suspendions containing two cationic polymers were rapidly flocculated at almost all concentrations. the d(001) spacings of Na-montmorillonite after being with cationic polymer 587C show about 15$\AA$ suggesting the polymers may have entered the interlayer spaces. The polymer 494C-treated sample produced double peaks of about 12 and 15$\AA$ in XRD. It indicates that the high molecular weight polymer. And cationic polymer 494C may be adsorbed mainy on the outside surface of clay, and some polymers may peretrate into olny interlayers in the margin of montmorillonite particles because of its high molecular weught. CEC of polumer 587-treated sample was reduecd mmarkedly suggesting polymer blocks CEC sites. The d(001) spacings of Ca-montmorillonite after being treated with cationic polymers show about 15$\AA$ suggesting that the interlayer spaces have not been expanded. In the experiment using a dilute Ca-bearing solution, the suspended caly containinf anionic polymers was flocculated. The results indicate that the flocculation behavior of montmorillonite-polymer supension depends on not only polymer properties such as concentration, electric charge and molecular weight but also compositions of solvent.

  • PDF

Effect of Soil Conditioners on the Growth, Yield and Quality of Flue-cured Tobacco (토양 개량제 시용이 연초의 생육, 수량 및 품질에 미치는 영향)

  • Kim, Yong-Ok;Choi, Jyung
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.1
    • /
    • pp.87-95
    • /
    • 1983
  • This study was conducted to evaluate the affect of soil conditioners and their application rates on the growth, Yield and quality of Flue-cured tobacco. Soil conditioners for this study were Montmorillonite arid Zeolite as clay mineral source and Rice hull and Sawdust as organic source. Their application rates were 500, 1000, 2000kg/10a. The growth of tobacco plants was promoted, compared with that of Non- treated plot (control) by Zeolite, Montmorillonite and Rice hull application but decreased by Sawdust application. During tobacco growing season soil moisture content, compared with control, was increased by Zeolite and Montmorillonite application but decreased by Rice hull and Sawdust application. In contrast to soil moisture content, soil temperature was higher in the Rice hull and Sawdust plot than in the plot of Zeolite and Montmorillonite. The treatment of Sawdust, compared with control, obviously accelerated the maturity of tobacco, increased reducing Sugar but decreased total alkaloids, nicotine and nitrogen content of cured leaves. The Sawdust Plot decreased the Yield (kg/10a) with significant difference by 1 %level but significantly increased leaf quality (Won/kg) and value (Won/10a) by 1%and 5 %level, respectively. The present application , ate of Nitrogen in Korea (12.5kg/10a) seems to be excessive for Flue-cured tobacco production.

  • PDF

Thermal and Mineralogical Characterization of Ca-Montmorillonite from Gampo Area (감포지역(甘浦地域) Ca-몬모릴로나이트의 열적(熱的) 및 광물학적(鑛物學的) 특성(特性))

  • Moon, Hi-Soo;Choi, Sun Kyung;Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.175-184
    • /
    • 1988
  • Ten under 2 micron size fractions of the montmorillonite from Yongdongri area, Gyeongsangbug-Do were studied using X-ray powder diffraction, cation exchange measurement, differential thermal analysis, thermogravimetric analysis, differential thermal scanning calorimetry and chemical analysis. Montmorillonites occurring at same deposit show limited variation in chemical composition whereas in thermal properties they do not. Their dehydroxylation endothermic peaks are "abnormal" type with a small range of variation of peak temperature reflecting tetrahedral substitution of Al for Si. Data from DSC show that divalent-cation saturated montmorillonite has relatively a higher endothermic heat capacity than monovalent-cation saturated montmorillonite, indicating that cations with higher electronegativity hold more water molecules.

  • PDF

Reactive Dispersion and Mechanical Property of Dicyanate/Montmorillonite Nanocomposite (반응이 수반된 Dicyanate/Montmorillonite Nanocomposite의 분산과 물성특성 연구)

  • 장원영;이근제;남재도
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.75-83
    • /
    • 2003
  • Dicyanate-clay nanocomposite has been prepared by a melt in-situ polymerization method for different modifiers and cation exchange capacity (CEC) values in order to study dispersion and mechanical property. Various dicyanate nanocomposites were prepared by using different MMT systems containing different intercalants which led to different initial gallery heights and packing density. Depending on compatibility between dicyanate and clays, the degree of dispersion varied. Dispersion of clay plates in dicyanate resin depended mainly on CEC and aliphatic chain length of modifier. The lower CEC and shorter aliphatic chain length of modifier gave the exfoliation structure. It was also found that the reactivity of intercalant with dicyanate resin was one of the key factors facilitating the intercalation/exfoliation process of dicyanate/MMT nanocomposites. Shear modulus of reaction-induced dicyanate nanocomposite was significantly increased.

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

Incorporation of Montmorillonite/Silica Composite for the Corrosion Protection of an Epoxy Coating on a 2024 Aluminum Alloy Substrate

  • Thai Thu Thuy;Trinh Anh Truc;Pham Gia Vu
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2023
  • Layered silicate clay montmorillonite (MMT) has been used in nanocomposite coating to improve corrosion protection by reinforcing the barrier property. The better dispersion of MMT in the coating produces a higher barrier effect. Pretreatment with MMT could favor the delamination of clay platelets, facilitating MMT dispersion in the coating. In the present work, a montmorillonite/silica (MMT/Si) composite was prepared by the in situ sol-gel method. x-ray diffraction measurements and field-emission scanning electron microscopy observations showed silica crystal formation and increased basal spacing between the MMT platelets. Composite MMT/Si particles were introduced in an epoxy resin to reinforce the corrosion protection of the coating applied on the AA2024 surface. Electrochemical impedance spectroscopy (EIS) was performed to characterize the protective property of the coating. The results demonstrated the high barrier effect of the coating containing 5 wt% of MMT/Si. Adhesion evaluation after a salt spray test exhibited a high adherence to the epoxy coating containing MMT/Si.

Dehydration Characteristics of Cationic Surfactant-Modified Montmorillonite (양이온성 계면활성제로 표면개질된 몬모릴로나이트의 탈수 특성)

  • Seung Yeop Lee;Soo Jin Kim
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.305-314
    • /
    • 2002
  • The dehydration of hexadecyltrimethylammonium (HDTMA)-exchanged montmorillonite has been studied using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). The dehydration in HDTMA-montmorillonite seems to influence the swelling behavior of the organo-clay during heating. The basal d(001) spacing vs temperature curve of the HDTMA-montmorillonite has one broad swelling edge with a shoulder on the low-temperature side. We believe that the shoulder at $100^{\circ}C$ for the HDTMA-montmorillonite is due to interlayer swelling induced by the initial rearrangement of surfactants, and the second edge at $200^{\circ}C$ is caused by interlayer swelling resulting from the secondary vertical reorientation of alkyl chains. It seems that the dehydration of organo-clay induces a reorientation of the alkyl chains by transition to more vertical position relative to the silicate sheets, allowing instantly greater d-spacing.

Influence of Ozone Treatment on the Surface Characteristics of Montmorillonite and the Thermal Stability of Montmorillonite/polypropylene Nanocomposites (오존처리가 몬모릴로나이트의 표면특성 및 몬모릴로나이트/폴리프로필렌 나노복합재료의 열안정성에 미치는 영향)

  • Jin Sung-Yeol;Lee Jae-Rock;Park Soo-Jin
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • In this work, the effect of ozone treatment of montmorillonite (MMT) on the surface characteristics of montmorillonite and the thermal stability of MMT/polypropylene (PP) nanocomposites was investigated. The surface properties of MMT were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and X-ray photoelectron spectroscopy (XPS). Also, the thermal stability of nanocomposites was investigated in thermogravimetric analysis (TGA). As a result, it was found that the silicate interlayers of the organically modified MMT (D-MMT) were increased by about 11${\AA}$, as compared with the MMT. Also, FT-IR showed that a new peaks at $2800\~2900\;cm^{-1}$ appeared due to the $CH_2$ mode in the D-MMT The ozone treatment of the MMT led to an increase of SiO or $SiO_2$ groups on MMT surfaces, resulting in increasing the oxygen-containing functional groups on MMT. The ozonized MMT had higher thermal stability than that of untreated nanocomposites. This was due to the improvement of interfacial bonding strengths, resulting from the acid-base interfacial interactions between PP and MMT.

Flame Retardancy of Polypropylene/Montmorillonite Nanocomposites with Halogenated Flame Retardants (할로젠 계열의 난연제가 첨가된 폴리프로필렌/몬모릴로나이트 나노복합재료의 난연특성)

  • 이종훈;나중현;이대회;김명덕;공정호;이영관;남재도
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.569-575
    • /
    • 2003
  • The flame retardancy was investigated when the halogenated flame retardant, decabromodiphenyl oxide (DBDPO) and chlorinated paraffin wax (CPW), was added to the polypropylene (PP) / montmorillonite (MMT) nanocomposites. The flame retardancy of polymer resin could be improved not only by addition of flame retardant but also with nanoparticles compositions. The effect of the contents of flame retardant and nanoparticles on the flame retardancy of polypropylene/ montmorillonite nanocomposite systems was thoroughly examined in terms of limited oxygen index (LOI) and cone calorimetry. As a results of cone calorimetry, the heat release rate (HRR) was reduced by the flame retardant DBDPO and CPW, and CPW was a little better than DBDPO. The LOI increased from flammable region (LOI<19) to nonflammable region (LOI>20) for all the flame retardants used in this study. Especially, the improvement in flame retardancy by compounding with PP and MMT was better than that by adding flame retardant to polypropylene. So, the addition of flame retardant after compounding with montmorillonite was more efficient than simple addition of flame retardant.

Flame Retardancy and Mechanical Property of Polypropylene/ Nylon Nanocomposite Reinforced with Montmorillonite (몬모릴로나이트로 강화된 폴리프로필렌/ 나일론 나노복합재료의 난연특성 및 기계적 특성)

  • 이종훈;박호식;안인구;이윤희;김연수;이영관;남재도
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.576-582
    • /
    • 2003
  • When the halogenated flame retardant, decabromodiphenyl oxide, was added to the polypropylene/nylon blend, and was compounded with montmorillonite and compatibilizer, maleic anhydride polypropylene, the improvement of flame retardancy and mechanical properties was investigated. The degree of dispersion between polymer resin and inorganic nanoparticles was investigated, and the flame retardancy and mechanical properties was measured quantitatively. XRD results showed that the montrnorillonite was com-pletely exfoliated after polypropylen/nylon nanocomposites was mixed above twice. By compounding with montmorillonite, polypropylene/nylon blend system was overcome the deterioration of flame retardancy. The tensile strength and impact strength were slightly increased, and by compounding with montmorillonite, the additional increase in mechanical properties was obtained. Therefore, the flame retardancy of polypropylene / nylon blend was decreased by adding nylon, but by compounding with inorganic nanoparticle, improvement of the flame retardancy and mechanical properties was obtained.