• Title/Summary/Keyword: monsoon

Search Result 493, Processing Time 0.033 seconds

Dynamic Changes of Dissolved Oxygen during Summer Monsoon (하절기 장마동안 용존산소의 역동적 변화)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.213-221
    • /
    • 2000
  • Seasonal oxygen content and deficit rates were evaluated from 17 sites of Taechung Reservoir during 1993${\sim}$1994. In 1993, river inflows peaked during the monsoon in July${\sim}$August and disrupted thermal stratification and anoxic layers in the headwaters, thereby confining the anoxia to the mid-lake and downlake reach. The volume of anoxic water with < 4 mg/l DO comprised only < 10% of the total lake volume in this period. In contrast, during monsoon 1994, 85% of total lake volume was subject to hypoxic conditions with oxygen concentrations < 30% saturation, resulting in massive fishkills (Hypomesus olidus). Relative areal oxygen deficit (RAOD) was -0.024mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1993, whereas it rapidly decreased at the rate of 0.080mg O$_{2}$cm$^{-2}$d$^{-1}$ during monsoon 1994. Anoxic factor (AF) showed a same interannual pattern as the RAOD and was greater >50 d in 1994 (76.5 d) than 1993 (21.3 d). Thus, the reservoir showed a river-characteristics (6${\sim}$11 mg/l DO) in 1993 while lacustrine conditions (<4mg/l DO) dominated in 1994. Regression analysis showed that the variation of summer DO was mostly determined (R$^{2}$=0.99, p<0.0001) by inflow. These findings suggest that the primary factor regulating the oxygen content in this system during summer is an intensity of the monsoon rain.

  • PDF

On the characteristics of the 1993/1994 east Asian summer monsoon convective activities using GMS high cloud amount

  • ;;Moon, Sung-Euii;Sohn, Seoung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.1-21
    • /
    • 1995
  • The characteristics of the Asian summer monsoon have been investigated for the periods of 1993/1994, the contrasting years in a view of the summer monsoon precipitation. In order to investigate the monsoon features over the eastern Asian monsoon region, the cloudiness(using the extensive data derived by the geostationary meteorological satellite), the condition of underlying surface including sea-surface temperature, and the summer rainfall are analyzed and some comparisons with 1993 and 1994 are also made and the characteristic differences are discussed. An analysis of the 2-degree latitude-longitude gridded 5-day mean high cloud amount data shows the detailed movement and persistence of the convective activities. In order to describe the spatial and temporal structures of the intraseasonal oscillation for the movement and evolution of the monsoon cloud, the extended empirical orthogonal fnction analysis with the twenty-day window size is used for the each year. Also, in order to find out the periodicity of the equatorial convective cluster, Fourier harmonic analysis is applied to the each year. The most prevailing intraseasonal oscillations of high cloud amount are 61 day mode and 15day mode in the equatorial and the subtropical oceans. However it was found that the most prevailing modes over the equatorial western Pacific and Indian Ocean were different for each year, hence raising the possibillity that the contrasting monsoon presipitation may be more fundamentally related to the interaction of intraseasonal oscillations and seasonal variation of convective activities over the lower latitude ocean.

Evaluation of autocorrelation characteristics of arctic oscillation and its cross-correlation to the monsoon and typhoon (북극진동의 자기상관 특성 및 우리나라 장마 및 태풍과의 교차상관 특성 평가)

  • Lee, Hyunwook;Song, Sunguk;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1247-1260
    • /
    • 2018
  • This study investigated the effect of arctic oscillation by analyzing the cross-correlation characteristics between the arctic oscillation index (AOI) and the number of typhoons occurred in the North Pacific, the number of typhoons affecting South Korea, total rainfall amount and number of rainy days during the monsoon season in South Korea. For this analysis, the monthly AOI data were transformed into the average data about January and seasonal AOI data representing winter, spring, fall and winter. The typhoon data and monsoon data were all those collected annually. The data period for this analysis was determined to be from 1961 to 2016 by considering the data available. Based on this analysis, it was found that the arctic oscillation has a weak but statistically significant effect on the monsoon characteristics of South Korea. However, the level of effect was not consistent over the data period but varied significantly periodically. For example, the cross-correlation coefficient derived for the recent 10 years was estimated to be higher than 0.8, but was simply insignificant during the 30 years before the last decade. The overall effect of arctic oscillation on the occurrence of typhoon was found to be statistically insignificant, but was also fluctuating periodically to show somewhat significant effect. Finally, it should be mentioned that the effect of arctic oscillation on the typhoon and monsoon had been changing by turns from 1960s to 2000s. However, in the 2010s, it happened that the effect of arctic oscillation has become significant on both typhoon and monsoon in South Korea.

Estimated Toxic Metal Concentrations in Riverbank Soil of the Han and Anyang Rivers (서울한강 둔치 및 안양천 하류부 둔치주변 토양오염 조사연구)

  • Kim, Seol Ah;Lee, Jai-Young;Oh, Byung-Teak
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.12-17
    • /
    • 2013
  • Heavy metal contamination of soil and water from industrial sources remains a worldwide environmental concern. Concentrations of toxic metals were measured in soil from banks of the Han and Anyang rivers. Pre-monsoon samples contained the highest heavy metal concentrations (Cu > As > Pb > Cd > $Cr^{6+}$; up to 57.80, 38.23, 25.43, 2.21, 0.32 mg/kg, respectively), but concentrations decreased at all sites during the monsoon and post-monsoon seasons. Higher heavy metal concentrations in pre-monsoon samples may be attributed to dust pollution, especially from roads near the river. A gradual reduction in heavy metal concentrations during the rainy season may be due to washing out. The high concentration of metals could cause health problems, especially in residential areas.

Effect of Season and Fertilizer on Species Composition and Nutritive Value of Native Grasses

  • Khan, R.I.;Alam, M.R.;Amin, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1222-1227
    • /
    • 1999
  • Effect of three major cropping seasons and five fertilizer treatments on botanical composition, nutritional composition and in sacco digestibility of native grasses grown in 30 experimental plots of a medium fertile land was determined. It was observed that all the major grass species were grown in all seasons but their predominancy of growth was different. During the study the predominant grass species were Panicum repens (Angta), Fimvristylis miliacea (Joina), Cyanolis axillaries (Kanainala), Cynodon dactylon (Durba) and Cyperus iria (Phulchaise) which contributed about 27, 20, 13, 11 and 9% of the total grass yield, respectively. Dry matter (DM) contents was higher in dry followed by monsoon and summer seasons (p<0.05). Crude protein (CP) content in the summer and monsoon appeared to be higher (p<0.05) than that of dry season. Organic matter (OM) and neutral detergent fibre (NDF) were higher (p<0.05) in dry and monsoon than in summer season. Application of urea fertilizer and cowdung increased 28.2% of CP content of the grasses, but decreased 19.5 and 9.8% of DM and NDF contents, respectively. The potential degradation of DM and CP of the grasses grown in summer were 4.1 and 8.4% and 3.9 and 5.8% higher than those of monsoon and dry seasons, respectively, and both of these increased (11.3 and 5.9%, respectively) with the application of cowdung and urea fertilizer.

Dendroclimatological Investigation of High Altitude Himalayan Conifers and Tropical Teak In India

  • Borgaonkar, H.P.;Sikder, A.B.;Ram, Somaru;Kumar, K. Rupa;Pant, G.B.
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.15-26
    • /
    • 2007
  • A wide tree-ring data network from Western Himalayan region as well as from Central and Peninsular India have been established by the Indian Institute of Tropical Meteorology (IITM), Pune, India. This includes several ring width and density chronologies of Himalayan conifers (Pinus, Picea, Cedrus, Abies)covering entire area of Western Himalaya and teak (Tectona grandis L.F.) from central and peninsular India. Many of these chronologies go back to $15^{th}$ century. Tree-ring based reconstructed pre-monsoon (March-April-May) summer climate of Western Himalaya do not show any significant increasing or decreasing trend since past several centuries. High altitude tree-ring chronologies near tree line-glacier boundary are sensitive to the winter temperature. Unprecedented higher growth in recent decades is closely associated with the warming trend over the Himalayan region. Dendroclimatic analysis of teak (Tectona grandis) from Central and Peninsular India show significant relationship with pre-monsoon and monsoon climate. Moisture index over the region indicates strong association with tree-ring variations rather than the direct influence of rainfall. It is evident that, two to three consecutive good monsoon years are capable of maintaining normal or above normal tree growth, even though the following year is low precipitation year.

  • PDF

Infouences of the Asian Monsoon and the Kuroshio on the Sea Surface Temperatures in the Yellow, the Japan and the East China Seas (아시아 季節風과 쿠로시오가 黃海, 東海 및 東支那海의 表面水溫에 미치는 影響)

  • 강옥균
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • A simple analytic model of the sea surface temperature(SST) is developed in order to understand the effects of the Asian monsoon and the Kuroshio on the annual variations of SST by the Asian monsoon is almost in phase with the incoming radiation whereas that by the Kuroshio is out of phase with the incoming radiation. In the Yellow Sea, due to the heat advection by the Asian monsoon, the yearly mean SST is low and the annual range of SST exceeds 20$^{\circ}C$. The annual range of SST in the northwestern Japan Sea is large because of the combined effects of the Asian monsoon and the cold water advection. In the Kuroshio and in the Tsushima Current regions, the annual range of SST is small and the mean SST is high due to the heat advection by warm currents.

Influence of Seasonal Monsoon on Trophic State Index (TSI), Empirical Water Quality Model, and Fish Trophic Structures in Dam and Agricultural Reservoirs (계절적 몬순에 의한 댐 인공호 및 농업용 저수지에서의 영양상태지수(TSI), 경험적 수질 모델 및 어류 트로픽 구조)

  • Yun, Young-Jin;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1321-1332
    • /
    • 2014
  • The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nurnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of $R^2$ : 0.76-0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, $R^2=0.70$) up to 70% by TP during the Po season. The eutrophication tendency, based on the $TSI_{TP}$ vs. $TSI_{N:P}$ were predictable ($R^2$ ranged 0.85-0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, $TSI_{N:P}$ vs. $TSI_{CHL}$ had a monsoon seasonality in relation to values of $TSI_{N:P}$ during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.

Estimation of Extreme Sea Levels with Consideration of Tide and Monsoon by Using EST at the East Coast (조석과 계절풍을 고려한 EST에 의한 동해연안의 극치해면 산정)

  • Kang, Ju-Whan;Kim, Yang-Seon;Park, Seon-Jung;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.210-216
    • /
    • 2012
  • EST has been applied to the East Coast to estimate extreme sea levels. Surge heights induced by 51 typhoons which have occurred last 60 years were calculated by ADCIRC model. The training set which is consist of surge heights by both typhoon and monsoon was constructed. The maximum surge height of the year excluding the one by typhoon is considered to be the surge height by monsoon. High/low tide conditions and spring/neap tide conditions were considered for constructing input vectors of typhoon and monsoon, respectively. The annual tide is also considered in response vectors for each case. The result is in accord with Jeong et al. (2008), which implies validity of the present study.