• Title/Summary/Keyword: monsoon

Search Result 498, Processing Time 0.027 seconds

Radium Isotope Ratio as a Tracer for Estimating the Influence of Changjiang Outflow to the Northern Part of the East China Sea (라듐 동위원소 방사능비를 추적자로 사용한 동중국해 북부 해역에서 장강 유출수의 영향 추정)

  • Kim, Kee-Hyun;Kim, Seung-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.133-142
    • /
    • 2009
  • In order to understand the present environmental condition and future impingement of Changjiang(Yangtze River) outflow upon the adjacent seas after the scheduled completion of the Sanxia (Three Gorges) Dam in 2009, we tried to estimate the mixing ratios among surface waters of three end-members: Changjiang Water (CW), Kuroshio Water (KW), and East China Sea Water (ECSW) using $^{228}Ra/^{226}Ra$ activity ratio and salinity as tracers. Water samples were collected from 32 stations in November 2005 (R/V Tamgu 3), from 20 stations in July 2006 (R/V Ocean 2000) and from 17 stations in August 2006 (R/V Ieodo) in the northern part of the East China Sea. Radium isotopes in ~300 liters of surface seawater were extracted onboard by filtering through manganese impregnated acrylic fibers and following coprecipitation as $Ba(Ra)SO_4$. Activities of radium isotopes were determined by a high purity germanium detector. Results show that the fraction of CW was in the range of 1-23% in the study area, while KW was in the range of 0-30 % and ECSW 58-100 %. The eastward plume of Changjiang outflow, commonly observed in satellite images during summer and also displayed by the eastward-decreasing CW fraction in this study, could be attributed to Ekman transport caused by the SE monsoon prevailing in this region during summer. Results of this study showed that in the drought season, there was a little or no fraction of CW in the study area. Concentration of dissolved inorganic nitrogen (DIN) showed strong positive relationship with the fraction of CW, suggesting Changjiang as the major source of nitrogen. The mixing curve of DIN indicates the removal of nitrate by biological uptake during the mixing of CW with ambient seawater in the study area.

  • PDF

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.

Stream Ecosystem Assessments, based on a Biological Multimetric Parameter Model and Water Chemistry Analysis (생물학적 다변수 모델 적용 및 수화학 분석에 의거한 갑천생태계 평가)

  • Bae, Dae-Yeul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.198-208
    • /
    • 2006
  • This research was to apply a multi-metric approach, so called the Index of Biological Integrity (IBI) as a tool for biological evaluations of water environments, to a wadable stream. For the study, we surveyed 5 sampling locations in Kap Stream during August 2004 ${\sim}$ September 2005. We also compared the biological data with long-term water quality data, obtained from the Ministry of Environment, Korea and physical habitat conditions based on the Quantitative Habitat Evaluation Index (QHEI). We used ten metric systems for the IBI model to evaluate biological stream health. Overall IBI values in Kap Stream averaged 24 (range: 20${\sim}$30, n=5), indicating a "fair ${\sim}$ poor" conditions according to the modified criteria of Karr (1981) and US EPA(1993). Exclusive of 4th survey, average IBI values at the upstream reach (S1 ${\sim}$ S3)and downstream reach (S4 ${\sim}$ S5) were 20 and 24, respectively. However, in 4th survey the averages were 21 and 20 in the upstream and downstream reaches, respectively. This difference was larger in the upstream than in the downstream because of physical condition disturbed during summer monsoon. Values of the QHEI varied from 75(fair condition) to 148 (good condition) and values of QHEI in the S3 were significantly (P=0.001, n=5) lower than other sites. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were greater by 3 ${\sim}$ 8 fold in the downstream than in the upstream reach. We believe that present IBI approach applied in this study may be used as a key tool to set up specific goals for restoration of Kap Stream.

Pollutant Loading Estimate from Yongdam Watershed Using BASINS/HSPF (BASINS/HSPF를 이용한 용담댐 유역의 오염부하량 산정)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.187-197
    • /
    • 2006
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency(EPA) was applied to the Yongdam Watershed to examine its applicability for loading estimates in watershed scale. It was run under BASINS (Better Assessment Science for Integrating point and Nonpoint Sources) program, and the model was validated using monitoring data of 2002 ${\sim}$ 2003. The model efficiency of runoff was high in comparison between simulated and observed data, while it was relatively low in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources and land uses intermixed in the watershed. The estimated pollutant load from Yongdam watershed for BOD, T-N and T-P was 1,290,804 kg $yr{-1}$, 3,753,750 kg $yr{-1}$ and 77,404 kg $yr{-1}$,respectively. Non-point source (NPS) contribution was high showing BOD 57.2%, T-N 92.0% and T-P 60.2% of the total annual loading in the study area. The NPS loading during the monsoon rainy season (June to September) was about 55 ${\sim}$ 72% of total NPS loading, and runoff volume was also in a similar rate (69%). However, water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. Overall, the BASINS/HSPF was applied to the Yongdam watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading in watershed scale.

Biological Stream Health and Physico-chemical Characteristics in the Keum-Ho River Watershed (금호강 수계에서 생물학적 하천 건강도 및 이화학적 특성)

  • Kwon, Young-Soo;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.145-156
    • /
    • 2006
  • The objective of this study was to evaluate biological health conditions and physicochemical status using multi-metric models at five sites of the Keum-Ho River during August 2004 and June 2005. The research approach was based on a qualitative habitat evaluation index (QHEI), index of biological integrity (IBI) using fish assemblage, and long-term chemical data (1995 ${\sim}$ 2004), which was obtained from the Ministry of Environment, Korea. For the biological health assessments, regional model of the IBI in Korea (An,2003), was applied for this study. Mean IBI in the river was 30 and varied from 23 to 48 depending on the sampling sites. The river health was judged to be "fair condition", according to the stream health criteria of US EPA (1993) and Barbour et al. (1999). According to the analysis of the chemical water quality data of the river, BOD, COD, conductivity, TP, TN, and TSS largely varied epending on the sampling sites, seasons and years. Variabilities of some parameters including BOD, COD, TP, TN, and conductivity were greater in the downstream than in the upstream reach. This phenomenon was evident in the dilution by the rain during the monsoon. This indicates that precipitation is a very important factor of the chemical variations of water quality. Community analyses showed that species diversity index was highest (H=0.78) in the site 1, while community dominance index was highest in the site 3, where Opsariichthys uncirostris largely dominated. In contrast, the proportions of omnivore and tolerant species were greater in the downstream reach, than in the upstream reach. Overall, this study suggests that some sites in the downstream reach may need to restore the aquatic ecosystem for better biological health.

The Physico-chemical Characteristics in the Garorim Bay, Korea (가로림만의 이화학적 수질의 시.공간적 특성)

  • Nam, Hyun-Jun;Heo, Seung;Park, Seung-Yun;Hwang, Un-Ki;Park, Jong-Soo;Lee, Hae-Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.101-114
    • /
    • 2012
  • The physico-chemical characteristics including water temperature, salinity, dissolved oxygen(DO), chemical oxygen demand (COD), chlorophyll-a(Chl. a), suspended particulate matter(SPM) and dissolved inorganic nutrients were investigated in the Garolim Bay, Yellow Sea, Korea in 2010 carried out six times per year at 11 fixed stations by Korea Fisheries Research & Development Institute. The water temperature, salinity, COD, dissolved inorganic nutrients, Chl. a and SPM showed significant difference between surface and bottom water but the other parameters didn't. There were not significant difference between stations. The water temperature showed typical change patterns of the temperate seawater. The annual average of salinity showed more than 31 so that there could not have occurred low saline water. The average of DO from June to August showed over than 3mg/L which showed higher than the below standard value of the hypoxic (oxygen-deficient) water. The average of Chl. a varied $1.68{\mu}g/L$ at surface, $2.38{\mu}g/L$ at bottom layer in June and $1.68{\mu}g/L$ at surface, $1.57{\mu}g/L$ at bottom layer at August. The dissolved inorganic nutrients showed high concentration in February and low concentration in August due to the limitation of the freshwater input in summer and phytoplankton used to the dissolved inorganic nutrients. The ratio of DIN/DIP showed 30.52 at surface and 37.89 at bottom layer in June which was higher than other month. The SPM was 44.15mg/L at bottom layer in February which was the highest value in this study due to the northwest monsoon. Because of the actively water change in the open sea without inflow of freshwater from land in Garolom Bay, there were not occurred low saline water and hypoxic water. thus, this Bay showed good water quality and required to be conserved continuously as important costal area for fisheries.

Seasonal Change in C3/C4 Mixed Vegetation Populations over Paddy Levees in South Korea (남한의 논둑에 발달한 C3/C4 혼생식생의 계절변화)

  • Kim, Myung-Hyun;Oh, Young-Ju;Kim, Miran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.196-206
    • /
    • 2012
  • Studies of seasonal changes in $C_3/C_4$ mixed communities are rare, particularly in Asian summer monsoon climate zones. In our present study, seasonal changes in the profile and coverage of $C_3$ and $C_4$ plants were investigated in 2009 in Haenam, Yeongdong and Cheorwon regions of South Korea (all at different latitudes). The aim was to estimate the impacts of temperature and sunshine duration on species composition and transition timing of the $C_3$ and $C_4$ plants. From our results, the number of $C_3$ plants was found to increase from early spring to mid-May, and then decrease again until September in the Haenam and Yeongdong regions, but continuously increase from early spring to September in the Cheorwon region under relatively low summer temperatures. On the other hand, the number of $C_4$ plants increased from June or July to September in all three regions. These seasonal changes in species number and ratio have a direct impact upon species diversity which is highest when there are no dominant species. The relative coverage and relative summed dominance ratio (SDR') of the $C_3$ plants decreased from spring to autumn, but increased for the $C_4$ plants during this time in an exponential fashion with increasing accumulated temperature and sunshine duration. The transition timing from $C_3$ to $C_4$ plants occurred when the sum of sunshine duration for the days with daily mean temperature above $5^{\circ}C$ was 1017 hrs for the SDR'.

Study on Climate Change Impacts on Hydrological Response using a SWAT model in the Xe Bang Fai River Basin, Lao People's Democratic Republic (기후변화에 따른 라오스인민공화국의 시방파이 유역의 수문현상 예측에 대한 연구: SWAT 모델을 이용하여)

  • Phomsouvanh, Virasith;Phetpaseuth, Vannaphone;Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.6
    • /
    • pp.779-797
    • /
    • 2016
  • A calibrated hydrological model is a useful tool for quantifying the impacts of the climate variations and land use/land cover changes on sediment load, water quality and runoff. In the rainy season each year, the Xe Bang Fai river basin is provisionally flooded because of typhoons, the frequency and intensity of which are sensitive to ongoing climate change. Severe heavy rainfall has continuously occurred in this basin area, often causing severe floods at downstream of the Xe Bang Fai river basin. The main purpose of this study is to investigate the climate change impact on river discharge using a Soil and Water Assessment Tool (SWAT) model based on future climate change scenarios. In this study, the simulation of hydrological river discharge is used by SWAT model, covering a total area of $10,064km^2$ in the central part of country. The hydrological model (baseline) is calibrated and validated for two periods: 2001-2005 and 2006-2010, respectively. The monthly simulation outcomes during the calibration and validation model are good results with $R^2$ > 0.9 and ENS > 0.9. Because of ongoing climate change, three climate models (IPSL CM5A-MR 2030, GISS E2-R-CC 2030 and GFDL CM3 2030) indicate that the rainfall in this area is likely to increase up to 10% during the summer monsoon season in the near future, year 2030. As a result of these precipitation increases, the SWAT model predicts rainy season (Jul-Aug-Sep) river discharge at the Xebangfai@bridge station will be about $800m^3/s$ larger than the present. This calibrated model is expected to contribute for preventing flood disaster risk and sustainable development of Laos

  • PDF

Depositional Characteristics and Seasonal Change of Surface Sediment and Sedimentary Strucutre on the Doowoovi Tidal Flat, Southwestern Coast of Korea (한국 서남해안 두우리 조간대에서 표층 퇴적물 및 퇴적구조의 특성과 계절변화)

  • Baek Young Suk;Chun Seungsoo
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.10-17
    • /
    • 2004
  • The Doowoo-ri tidal flat in the southwestern Korean coast is a typical open-coast tidal flat which has no barriers in the offshore such as barrier island and sand bars. The difference of induced wave energy with seasons is affected directly on the distribution of surface sediment and the formation of sedimentary structures because the sedimentation by wind wave is relatively much important element in this open-coast tidal flat. This open-coast tidal flat can be classified into tidal beach, intertidal flat and lower mudflat according to the pattern of geomorphology and sediment type. The intertidal flat can be again divided into 3 types: sand flat, mixed flat and mud flat based on the primary sedimentary structure and sand/mud ratio. Doowoori tidal flat shows a seasonal change in the surface sedimentary facies based on sediment composition and primary sedimentary structure. The change is closely related to the direction and magnitude of monsoon wind and also to storm frequency. In winter and spring, when northwesterly wind is most dominant and strong and also storms are common, sand-flat facies is largely distributed on the intertidal flat, whereas mud-flat facies is most dominant during summer when weak southeasterly wind is common. In the fall season, mixed-flat facies is dominant on the flat. The Doowoori intertidal flat is covered by mud sediment which is ca. 20 cm in thickness in summer season. In winter season, surface sediment is changed from mud to sand because the summer mud is mostly eroded by strong wave action. Can-core peels in the intertidal flat show that parallel laminated mud or sand/mud and climbing ripple cross-laminated sandy silt are dominant on the upper intertidal flat $(0-1.3 {\cal}km)$ during summer season. On the other hand, on lower intertidal flat $(1.7-2.3 {\cal}km)$, dominant sedimentary facies is homogeneous mud. In winter, it is changed into parallel laminated and ripple cross-laminated sand facies.

  • PDF

Characteristics of Pollution Loading from Kyongan Stream Watershed by BASINS/SWAT. (BASINS/SWAT 모델을 이용한 경안천 유역의 오염부하 배출 특성)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Lee, Sae-Bom
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.200-211
    • /
    • 2009
  • A mathematical modeling program called Soil and Water Assessment Tool (SWAT) developed by USDA was applied to Kyongan stream watershed. It was run under BASINS (Better Assessment Science for Integrating point and Non-point Sources) program, and the model was calibrated and validated using KTMDL monitoring data of 2004${\sim}$2008. The model efficiency of flow ranged from very good to fair in comparison between simulated and observed data and it was good in the water quality parameters like flow range. The model reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The results of pollutant loads estimation as yearly (2004${\sim}$2008), pollutant loadings from 2006 were higher than rest of year caused by high precipitation and flow. Average non-point source (NPS) pollution rates were 30.4%, 45.3%, 28.1% for SS, TN and TP respectably. The NPS pollutant loading for SS, TN and TP during the monsoon rainy season (June to September) was about 61.8${\sim}$88.7% of total NPS pollutant loading, and flow volume was also in a similar range. SS concentration depended on precipitation and pollution loading patterns, but TN and TP concentration was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. SWAT based on BASINS was applied to the Kyongan stream watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and non-point sources in watershed scale.