• Title/Summary/Keyword: monovalent cation

Search Result 35, Processing Time 0.021 seconds

Effect of cation on solute permeability of mitochondrial membrane (미토콘드리아막의 용질투과성에 미치는 양이온의 영향)

  • 이영녹;이종삼
    • Korean Journal of Microbiology
    • /
    • v.9 no.4
    • /
    • pp.145-148
    • /
    • 1971
  • Mitochondria were isolated from Chlorella cells effects of cation on solute permeability of mitochondrial membrane were investigated using P$^{32}$ as a tracer. It was strikingly increased uptake of phosphate for NaCl, KCl, while evidently decreased phosphate uptake of mitochondrial membrane for $MgCl_2$, $CaCl_2$. This consider that uptake of monovalent cation were increased, but uptake of divalentcation were decreased for permeability of mitochondrial membrane as if the permeability of protoplasmic membrane.

  • PDF

Treatment of organic dye solutions by electrodialysis

  • Majewska-Nowak, Katarzyna M.
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.203-214
    • /
    • 2013
  • Laboratory tests were performed to determine the efficiency of dye solution desalination by electrodialysis. The study involved anionic dye and mineral salt recovery by obtaining two streams from a salt and dye mixture - dye-rich solution and salt solution. A standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes were used in the ED stack. It was found that the separation efficiency was strongly dependent on the dye molecular weight. The best results for standard ion-exchange membranes were achieved for the desalination of Direct Black solution. Furthermore, the obtained results implied that the application of monovalent selective anion-exchange membranes improved the recovery of dye and salt solutions - the dye concentration in the diluate remained constant irrespective of the molecular weight of anionic dyes, whereas the salt recovery remained very high (99.5%).

Chloride diffusion in concrete associated with single, dual and multi cation types

  • Song, Zijian;Jiang, Linhua;Zhang, Ziming
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2016
  • Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the $Ca^{2+}/Mg^{2+}$ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

Chemically Modified Graphene and Their Hybrid Materials: Toward Printed Electronics

  • Jeong, Seung-Yeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.71-71
    • /
    • 2012
  • Chemically modified graphene has been great interest for the application of printed electronics using solution prossesable technique. Here, we demonstrate a large area graphene exfoliation method with fewer defects on the basal plane by application of shear stress in solution to obtain high quality reduced graphene oxide (RGO). Moreover, we introduce a novel route to preparing highly concentrated and conductive RGO in various solvents by monovalent cation-${\pi}$ interaction. Noncovalent binding forces can be induced between a monopole (cation) and a quadrupole (aromatic ${\pi}$ system). The stability of this RGO dispersion was more sensitive to the strength of the cation-${\pi}$ interactions than to the cation-oxygen functional group interactions. The RGO film prepared without a post-annealing process displayed superior electrical conductivity of 97,500 S/m. Our strategy can facilitate the development of large scalable production methods for preparing printed electronics made from high-quality RGO nanosheets.

  • PDF

Comparative Crystal Chemistry of Exchanged by Cs-, Cd-, Pb-, and Sr-synthetic Mordenite Using High Resolution X-ray Powder Diffraction (고분해능 X-선 분말 회절을 이용한 Cs-, Cd-, Pb-, Sr-으로 치환된 합성 모데나이트의 격자상수 비교 연구)

  • Lee, Soojin;Lee, Hyunseung;Seoung, Donghoon;Kim, Pyosang;Kim, Hyeonsu;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.345-353
    • /
    • 2022
  • This study aimed to fundamentally understand changes of cell parameters of cation-exchanged mordenites using high resolution X-ray powder diffraction for studies that immobilization of various heavy metal cation using synthesis mordenite (Na6.6Al6.6Si41.4O96·20.4H2O, Na-MOR). As a results of measurement by Thermogravimetric analysis (TGA), it was confirmed that 19.4, 20.4 water molecules per unit cell were present in monovalent-cation substituted MOR (Cs-MOR, Na-MOR), and 21, 23.1, 23.2 water molecules per unit cell were present in divalent-cation substituted MOR (Pb-MOR, Sr-MOR, Cd-MOR). The space group of all the samples were identified as Cmcm belonging to the orthorhombic crystal system. Compared to Na-MOR, starting material, relative peak intensity of (110) and (200) is significantly changed after cation substitution whereas peak position is almost similar. Also, (220) peak that was not found in Na-MOR was clearly observed in Pb-, Cd- and Sr-exchanged MOR. Thus, it was estimated that changes of atomic distribution usually occurred on ab-plane while changes of cell parameters were little. Detailed changes in the cell parameters of cation-exchanged mordenites were derived from whole profile fitting method using the GSAS suite program. Changes in the axial lengths and unit cell volume of cation substitution showed different relationship depending on ionic radius and charge number. In case of monovalent-cation substituted MOR, the length of a-axis increases whereas the length of b- and c-axis decrease by absorbed cation radius. In the case of divalent-cation exchanged MOR, the length of a-axis usually decreases while the length of b- and c-axis increases by cation radius. It was confirmed that unit cell volume of monovalent and divalent cation substituted MORs had an independent tendency by cation radius.

A Numerical Solution of Transport of Mono- and Tri-valent Cations during Steady Water Flow in a Binary Exchange System

  • Ro, Hee-Myong;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • A one-dimensional transport of displacing monovalent ion, $A^+$, and a trivalent ion being displaced, $B^{3+}^ in a porous exchange system such as soil was approximated using the Crank-Nicolson implicit finite difference technique and the Thomas algorithm in tandem. The variations in the concentration profile were investigated by varying the ion-exchange equilibrium constant (k) of ion-exchange reactions, the influent concentrations, and the cation exchange capacity (CEC) of the exchanger, under constant flux condition of pore water and dispersion coefficient. A higher value of k resulted in a greater removal of the native ion, behind the sharper advancing front of displacing ion, while the magnitude of the penetration distance of $A^+$ was not great. As the CEC increased, the equivalent fraction of $B^{3+}^ initially in the soil was greater, thus indicating that a higher CEC adsorbed trivalent cations preferentially over monovalent ions. Mass balance error from simulation results was less than 1%, indicating this model accounted for instantaneous charge balance fairly well.

  • PDF

Effects of Monovalent Cations on the βReaction Kinetics of Tryptophan Synthase (트립토판 합성효소의 β반응속도에 미치는 일가양이온의 영향)

  • Kim, Il;Shin, Hye-Ja;Im, Woon-Ki;Kim, Han-Do
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 2004
  • Effects of monovalent cations were examined on the fast $\beta$reaction of $\alpha$D56N and $\alpha$D56G mutant tryptophan synthase. Reaction rates for the production and degradation of intermediates in the reaction were changed in the presence of cathons. The mutant proteins showed different reaction rates from those of wild-type protein, and additional changes occurred in the presence of cations. The results showed that monovalent cations and $\alpha$D56 are important in allosteric properties of this protein.

Effect of Salts on Gelation Time of Silk Sericin Solution

  • Oh, Hanjin;Lee, Ji Young;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.326-328
    • /
    • 2013
  • Sericin undergoes gelation by the structural transition from random coil to b-sheet transition. In the present study, the gelation time of sericin solution was investigated in the presence of NaCl, KCl and $CaCl_2$. The addition of salts delayed the gelation time, and $CaCl_2$ had the most pronounced effect, which delayed about 8 h at maximum. The gelation time increased with the concentration of salt. The transition of secondary structure of sericin was retarded in the presence of salt. The effect of salts on the gelation time of sericin might be due to the solvation effect of relevant cation.

Dissolution Properties of Phosphate Glasses with Trace Elements

  • Lee, Hoi-Kwan;Kang, Won-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.371-376
    • /
    • 2005
  • Phosphate glasses were prepared by melting quenching process, and glass formation and dissolution properties were studied. The glass forming region in the $K_2O-CaO-P_2O_5$ system is quietly agreed with the report by Mazurin OV et al. with $M_2O-M'O-P_2O_5$ system (M : monovalent cation, M'divalent cation). Conditionally these glasses have solubility from absorbing the moisture or water and then release elements with trace elements, and the thermal and chemical properties were controllable by the $CaO,\;K_2O,\;P_2O_5$ contents. In the abnormal glass properties, this paper showed the possibility the present glasses can be a good candidate for one component of the slow released agriculture fertilizer.