• 제목/요약/키워드: monotonic static loading

검색결과 50건 처리시간 0.026초

Characteristic features of concrete behaviour: Implications for the development of an engineering finite-element tool

  • Kotsovos, Michael D.;Pavlovic, Milija N.;Cotsovos, Demetrios M.
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.243-260
    • /
    • 2008
  • The present article summarises the fundamental characteristics of concrete behaviour which underlie the formulation of an engineering finite element model capable of realistically predicting the behaviour of (plain or reinforced) concrete structural forms in a wide range of problems ranging from static to impact loading without the need of any kind of re-calibration. The already published evidence supporting the proposed formulation is complemented by four additional typical case studies presented herein; for each case, a comparative study is carried out between numerical predictions and the experimental data which reveals good agreement. Such evidence validates the material characteristics upon which the FE model's formulation is based and provides an alternative explanation regarding the behaviour of structural concrete and how it should be modelled which contradicts the presently (widely) accepted assumptions adopted in the majority of FE models used to predict the behaviour of concrete.

Self compacting reinforced concrete beams strengthened with natural fiber under cyclic loading

  • Prasad, M.L.V;saha, Prasenjit;Kumar, P.R.
    • Computers and Concrete
    • /
    • 제17권5호
    • /
    • pp.597-612
    • /
    • 2016
  • The present work focuses on the use of coconut fiber in self compacting concrete. Self-Compacting Concrete (SCC) is a highly flowable, stable concrete which flows readily into place, filling formwork without any consolidation and without undergoing any significant segregation. Use of fibers in SCC bridge the cracks and enhance the performance of concrete by not allowing cracks to propagate. They contribute to an increased energy absorption compared to plain concrete. Coconut fiber has the highest toughness among all natural fibers. It is known that structures in the seismic prone areas are always under the influence of cyclic loading. To justify the importance of strengthening SCC beams with coir fiber, the present work has been undertaken. A comparison is made between cyclic and static loading of coconut fiber reinforced self compacting concrete (FRSCC) members. Using the test data obtained from the experiment, hysteresis loops were drawn and comparison of envelope curve, energy dissipation, stiffness degradation were made and important conclusions were draw to justify the use of coconut fiber in SCC.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

Low cycle fatigue damage assessment in steel beams

  • Daali, M.L.;Korol, R.M.
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.341-358
    • /
    • 1995
  • The results of a series of ten W-shaped test specimens subjected to monotonic, quasi-static cyclic loading and fatigue type of loading in the form of constant amplitude tests are presented. The objectives were to assess and compare the rotation capacity and energy absorption of monotonically and cyclically loaded beams, and for the latter specimens to document the deterioration in the form of low cycle fatigue due to local buckling. In addition, strength and energy dissipation deterioration and damage models have been developed for the steel beam section under consideration. Finally, a generalized model which uses plate slenderness values and lateral slenderness is proposed for predicting rate in strength deterioration per reversal and cumulated damage after a given number of reversals.

Mechanical properties of material in Q345GJ-C thick steel plates

  • Yang, Na;Su, Chao;Wang, Xiao-Feng;Bai, Fan
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.517-536
    • /
    • 2016
  • Thick steel plate is commonly found with mega steel structures but its properties have not been fully explored. Grade Q345GJ-C steel plate with thickness ranging from 60 mm to 120 mm are studied in this paper. Both the static and cyclic performance of material in different directions (horizontal and through-thickness directions) and locations (outer surface, 1/4 thickness and mid-depth) are experimentally obtained. The accumulative damage during cyclic loading is also calculated by using bilinear mixed hardening (BMH) constitutive relationship together with the Lemaitre's damage model. Results show that the static properties are better at the outer surface of thick steel plates than those at mid-depth. Properties in through-thickness direction are similar to those at mid-depth in the horizontal direction. The cyclic performance at different locations of a given plate is similar within the range of strain amplitude studied. However, when damage parameters identified from monotonic tensile tests are included in the numerical simulation of cyclic loading tests, damage is found accumulating faster at mid-depth than close to outer surface.

탄성파 응용기술에 의한 CFRP 복합재료의 저속충격 손상역의 미시적 거동 특성 탐지 (DETECTION OF MICROSCOPIC BEHAVIOR OF LOW VELOCITY IMPACT DAMAGED CFRP LAMINATE UNDER TENSILE LOADING BY ELASTIC WAVES)

  • 이준현;권오양;이승석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.650-655
    • /
    • 1993
  • Carbon/epoxy composite(CFRP) coupons previously damaged by low velocity impact were tested under static tensile loading and microscope progress of damage was characterized by ultrasonic C-scan, Scanning Acoustic Microscopy (SAM) and Acoustic Emission(AE) techniques which were based on the application of elastic waves. The degress of impact damage has been correlated with the AE activity during monotonic or loading/unloading tensile testing as well as the result of ultrasonic test. The coupons were subjected to impact velocities ranged from 0.71 to 2.17 m/sec, which introduced the amount of damage rated as 0%, 10%, 30%, and 50% with reference to the total absorbed energy at fracture. Special attention was paid to determine optimal AE parameters to characterize the microscopic fracture process and to predict the residual strength of composite laminates. AE RMS voltage during the early stage of tensile loading was found an effective parameter to quantify the degree of impact damage. It was also found that the Felicity ratio is closely related to the stacking sequence and the residual strength of the CFRP laminates.

  • PDF

Experimental investigation of thin steel plate shear walls with different infill-to-boundary frame connections

  • Vatansever, Cuneyt;Yardimci, Nesrin
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.251-271
    • /
    • 2011
  • To make direct comparisons regarding the cyclic behavior of thin steel plate shear walls (TSPSWs) with different infill-to-boundary frame connections, two TSPSWs were tested under quasi-static conditions, one having the infill plate attached to the boundary frame members on all edges and the other having the infill plate connected only to the beams. Also, the bare frame that was used in the TSPSW specimens was tested to provide data for the calibration of numerical models. The connection of infill plates to surrounding frames was achieved through the use of self-drilling screws to fish plates that were welded to the frame members. The behavior of TSPSW specimens are compared and discussed with emphasis on the characteristics important in seismic response, including the initial stiffness, ultimate strength and deformation modes observed during the tests. It is shown that TSPSW specimens achieve significant ductility and energy dissipation while the ultimate failure mode resulted from infill plate fracture at the net section of the infill plate-to-boundary frame connection after substantial infill plate yielding. Experimental results are compared to monotonic pushover predictions from computer analysis using strip models and the models are found to be capable of approximating the monotonic behavior of the TSPSW specimens.

Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach

  • Krishna, B. Murali;Reddy, V. Guru Prathap;Tadepalli, T.;Kumar, P. Rathish;Lahir, Yerra
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.561-570
    • /
    • 2019
  • Understanding the realistic behavior of concrete up to failure under different loading conditions within the framework of damage mechanics and plasticity would lead to an enhanced design of concrete structures. In the present investigation, QR (Quick Response) code based random speckle pattern is used as a non-contact sensor, which is an innovative approach in the field of digital image correlation (DIC). A four-point bending test was performed on RC beams of size 1800 mm × 150 mm × 200 mm. Image processing was done using an open source Ncorr algorithm for the results obtained using random speckle pattern and QR code based random speckle pattern. Load-deflection curves of RC beams were plotted for the results obtained using both contact and non-contact (DIC) sensors, and further, Moment (M)-Curvature (κ) relationship of RC beams was developed. The loading curves obtained were used as input data for material model parameters in finite element analysis. In finite element method (FEM) based software, concrete damage plasticity (CDP) constitutive model is used to predict the realistic nonlinear quasi-static flexural behavior of RC beams for monotonic loading condition. The results obtained using QR code based DIC are observed to be on par with conventional results and FEM results.

SM490강재의 동적반복소성모델의 정식화 및 3차원 탄소성 유한요소해석의 적용 (Formulation of Dynamic Cyclic Plasticity Model for SM490 and Its Application to 3-Dimensional Elastic-Plastic Finite Element Analysis)

  • 장경호;장갑철
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.465-471
    • /
    • 2006
  • 지진과 같은 동적 반복하중을 받는 강구조물의 이력거동을 구현하기 위해서는 사용된 강재의 정 동적 상태에서의 응력-변형률 관계 및 특성을 고려한 동적반복소성모델이 필요하다. 본 연구에서는 SM490강재의 정 동적 단조 및 반복하중 실험을 수행하여 역학적 특성 및 응력-변형률 관계를 명확히 하였다. 그리고 실험결과에 기초하여 SM490강재의 동적반복소성모델을 제안하였으며 이를 유한변위이론에 기초한 3차원 탄소성 유한요소해석에 적용하였다. 실험시편을 모델링하여 정 동적 단조, 반복 및 변형률속도변화에 따른 3차원 탄소성 유한요소해석을 수행하였으며 이를 실험결과와 비교하였다. 비교를 통하여 본 연구에서 개발한 해석기법이 강부재의 정 동적 변형상태를 정도있게 예측할 수 있음을 검증하였다.

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.