• Title/Summary/Keyword: monotonic aging

Search Result 8, Processing Time 0.021 seconds

Effective CFRP retrofit strategy for flexural deficient RC beams

  • Banjara, Nawal Kishor;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.163-175
    • /
    • 2019
  • Structural deterioration arises due to aging, environmental effects, deficiencies during design and construction phase, and overloading. Experimental and numerical investigations are carried out in this study to evaluate the performance of control and flexural deficient reinforced concrete (RC) beams under monotonic loading. Three levels of flexural deficiency are considered in this study. After confirming load carrying capacities of control and flexural deficient beams, the flexural deficient RC beams are strengthened with carbon fibre reinforced polymer (CFRP) fabric. CFRP strengthened RC beams are tested under monotonic loading and compared with the performance of control specimen. Further, non-linear finite element analyses are also carried out to evaluate the flexural performance of control, deficient and CFRP strengthened flexural deficient RC beams. There is good correlation between results of experimental and numerical investigations. Numerical approach presented in this study can be adopted for assessing the adequacy of CFRP retrofit measure.

Ultrasonic Nonlinearity of AISI316 Austenitic Steel Subjected to Long-Term Isothermal Aging (장시간 등온열화된 AISI316 오스테나이트강의 초음파 비선형성)

  • Gong, Won-Sik;Kim, ChungSeok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • This study presents the ultrasonic nonlinearity of AISI316 austenitic stainless steels subjected to longterm isothermal aging. These steels are attractive materials for use in industrial mechanical structures because of their strength at high-temperatures and their chemical stability. The test materials were subjected to accelerated heat-treatment in an electrical furnace for a predetermined aging duration. The variations in the ultrasonic nonlinearity and microstructural damage were carefully evaluated through observation of the microstructure. The ultrasonic nonlinearity stiffly dropped after aging for up to 1000 h and, then, monotonously decreased. The polygonal shape of the initial grain structures changed to circular, especially as the annealing twins in the grains dissolved and disappeared. The delta ferrite on the grain boundaries could not be observed at 1000 h of aging, and these continuously transformed into their sigma phases. Consequently, in the intial aging period, the rapid decrease in the ultrasonic nonlinearity was caused by voids, dislocations, and twin annihilation. The continuous monotonic decrease in the ultrasonic nonlinearity after the first drop resulted from the generation of $Cr_{23}C_6$ precipitates and ${\sigma}$ phases.

Static and Fatigue Characteristics of Urethane Foam Cored Sandwich Structures (우레탄 폼 코아 샌드위치 구조물의 정적 및 피로 특성)

  • 김재훈;이영신;박병준;김덕회;김영기
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.74-82
    • /
    • 1999
  • The static and fatigue characteristics of polyurethane foam cored sandwich structures are investigated. Three types of the specimens with the glass fabric faces and the polyurethane foam core are used; non-stitched. stitched, and stiffened sandwich specimen. Especially additional structural reinforcements with the twisted polyester and glass fiber for thickness direction are made to stitched sandwich structure panel to minimize the delamination of structure which is stitched the upper and lower faces through the core and the resin is impregnated Into stitched fiber with the characteristics of low viscosity of resin at resin flow temperature and cured together with during the curing process. Bending strength of stitched specimen which is 50 mm $50{\times}50{\;}mm$ pitched is improved by 50 % as com-pared with non-stitched specimen and stiffened specimen is improved 10 times more than non-stitched structure. After fatigue testing of $10^6$cycles by 20% of ultimate load under monotonic load, the bending fatigue strength of non-stitched specimen is decreased by 27% of monotonic bending strength, 39% for stitched structure and 20% for stiffened specimen. To verify the aging effect of polyurethane form core, Ultrasonic C-scanning equipment is used to detect the damage of skin laminate alone after fatigue test. From results of UT C-scan images, there is no defect that can be damaged occurred during fatigue test. It is concluded that the decrease of bending strength for foam cored sandwich specimen is caused by the decrease of stiffness due to the aging of polyurethane foam core during fatigue cycles.

  • PDF

Integrity Evaluation of Thinned Elbow Based on TES Plastic Load (TES 소성하중 기준의 감육엘보 기기건전성 평가)

  • Lee, Sung-Ho;Park, Chi-Yong;Lee, Jeong-Keun;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.281-286
    • /
    • 2008
  • Wall thinning defect due to flow accelerated corrosion is one of major aging phenomena in most power plant industries, and it results in reducing load carrying capacity of the piping systems. A failure testing system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of thinned elbows. Various finite element models were generated and analysed to figure out and simulate the behavior for other thinning shapes and loading conditions. This paper presents the decreasing trends of load carrying capacity according to the thinning dimensions which were revealed from the investigation of finite element analysis results. A mechanical integrity evaluation model for thinned elbows was proposed, also. This model can be used to calculate the TES plastic load of thinned elbows for general internal pressure, thinning location, and in-plane bending direction.

  • PDF

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior - (냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -)

  • Hong, Seong-Gu;Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.333-342
    • /
    • 2004
  • Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

Effect of mechanical surface treatment on the fracture resistance and interfacial bonding failure of Y-TZP zirconia (Y-TZP zirconia의 기계적 표면처리가 파절저항과 접착계면 실패에 미치는 영향)

  • Yi, Yang-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Purpose: Surface damage and bonding strength difference after micromechanical treatment of zirconia surface are to be studied yet. The aim of this study was to evaluate the difference of fracture resistance and bonding strength between more surface-damaged group from higher air-blasting particle size and pressure, and less damaged group. Materials and Methods: Disk shape zirconia ($LAVA^{TM}$) was sintered and air-blasted with $30{\mu}m$ particle size (Cojet), under 2.8 bar for 15 seconds, $110{\mu}m$ particle size (Rocatec), under 2.8 bar for 15 seconds, and $110{\mu}m$ particle size (Rocatec), under 3.8 bar for 30 seconds respectively. Biaxial flexure test and bonding failure load test were performed serially (n = 10 per group). For bonding test, specimens were bonded on the base material having similar modulus of elasticity of dentin with $200{\mu}m$-thick resin cement for tension of surface damage. Failure load of bonding was detected with acoustic emission (AE) sensor. Results: There were no significant differences both in the biaxial flexure test and bonding failure load test between groups (P > 0.05). Sub-surface cracks were all radial cracks except for two specimens. Conclusion: Within the limitations of no aging under monotonic load test, surface damage from higher air-blasting particle size and pressure was not significant. Evaluations of failure load with bonded zirconia disks was clinically relevant modality for surface damage and bonding strength, simultaneously.