• Title/Summary/Keyword: monophyletic group

Search Result 94, Processing Time 0.037 seconds

First Record of Orobdella tsushimensis (Hirudinida: Arhynchobdellida: Gastrostomobdellidae) from the Korean Peninsula and Molecular Phylogenetic Relationships of the Specimens

  • Nakano, Takafumi;Seo, Hong-Yul
    • Animal Systematics, Evolution and Diversity
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • Specimens of the genus Orobdella Oka, 1895 from Korea, including various locations in the Korean Peninsula, were identified as Orobdella tsushimensis Nakano, 2011. Phylogenetic analyses using mitochondrial cytochrome oxidase subunit 1 (COI), ND1, $tRNA^{Cys}$, $tRNA^{Met}$, 12S rRNA, $tRNA^{val}$, and 16S rRNA markers show that the newly collected specimens form a monophyletic group with the known O. tsushimensis specimens. The genetic distance of COI of these specimens was in the range 0.4-6.6%. These results confirm that the newly collected specimens belong to O. tsushimensis. This is the first record of the genus Orobdella from the Korean Peninsula.

Citrobacter amalonatics와 Citrobacter farmari에 의한 perchlorate 환원

  • Nirmala Bardiya
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.438-441
    • /
    • 2003
  • The present study reports the novel physiological function of dissimilatory perchlorate reduction by two strains JB101 and JB109 isolated from a sewage treatment facility in Incheon, South Korea. The physiological data of the isolates showed good correspondence with the members of the family Enterobacteriaceae. The partial 16S rRNA and 16S rDNA sequence of strains JB101 and JB109 showed similarity of 99.8% to Citrobacter amalonaticus and 98% to Citrobacter farmari, respectively. The study infers toward possibility of Citrobacter spp. to form an important group of dissimilatory perchlorate reducers within the (equation omitted) subclass of Proteobacteria because the majority of the known. members belong to two monophyletic groups namely Dechloromonas and Dechlorosoma in $\beta$ subclass of Proteobacteria.

  • PDF

Taxonomic Re-evaluation of Colletotrichum gloeosporioides Isolated from Strawberry in Korea

  • Nam, Myeong Hyeon;Park, Myung Soo;Lee, He Duck;Yu, Seung Hun
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.317-322
    • /
    • 2013
  • For the past two decades, the causal agent of anthracnose occurring on strawberry in Korea was considered Colletotrichum gloeosporioides. However, the recent molecular analysis has shown that the genus Colletotrichum has undergone many taxonomic changes with introduction of several new species. As a result, it revealed that C. gloeosporioides indeed consisted of more than 20 distinct species. Therefore, the Korean pathogen isolated from strawberry should be reclassified. The shape and size of the conidia of the pathogen were not distinctly different from those of C. gloeosporioides and C. fructicola, but it differed in shape of the appressoria. A combined sequence analysis of partial actin, glyceraldehydes-3-phosphate dehydrogenase genes, and the internal transcribed spacer regions showed that the strawberry isolates formed a monophyletic group with authentic strains of C. fructicola. On the basis of these results, the anthracnose fungi of the domestic strawberry in Korea were identified as C. fructicola and distinguished from C. gloeosporioides.

A Newly Recorded Basket Star of Genus Gorgonocephalus (Ophiuroidea: Euryalida: Gorgonocephalidae) from the East Sea, Korea

  • Kim, Donghwan;Shin, Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.31 no.4
    • /
    • pp.311-315
    • /
    • 2015
  • Euryalid specimens were collected from Gonghyeonjin and Daejin, Gangwon-do in the East Sea, Korea at a depth of 250-300 m by fishing nets on November 2013 and August 2014. They were identified as Gorgonocephalus arcticus Leach, 1819 belonging to family Gorgonocephalidae of order Euryalida, which was new to the Korean fauna. Nucleotide sequences of partial mitochondrial cytochrome c oxidase I (mt-COI) gene, which was 569 bp in length, were compared among four Gorgonocephalus species, and were subsequently employed to reconstruct phylogenetic trees using the MP, ML, and BI methods. As a result, no sequence difference was found between the G. arcticus mt-COI gene sequences from Korea and Canada, and the two made a strong monophyletic group. With the newly recorded G. arcticus in Korea, in total, four Gorgonocephalus species have been reported in Korea.

Phylogenetic Classification of Antrodia and Related Genera Based on Ribosomal RNA Internal Transcribed Spacer Sequences

  • Kim, Seon-Young;Park, So-Yeon;Jung, Hack-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.475-481
    • /
    • 2001
  • Sequences of ribosomal internal transcribed spaces (ITS) obtained from two Antrobia species and two related species were compared to investigate intrageneric and intergeneric phylogenetic relationships of Antrodia. The results showed that Antrodia species causing a brown rot in wood did not form a monophyletic clade and were separated into three distinct groups. Antrodia gossypina and A. vaillantii formed a clade having rhizomorphs as a homologous character. Antrodia serialis, A. sinuosa, and A. malicola formed a group together with Daedalea, Fomitopsis, and Postia species with brown rot habit. Antrodia xantha with a trimitic hyphal system and amyloid skeletal hyphae formed another distinct clade form other Antrodia species. The Antrodia species were separated from white rot genera such as Antrodiella, Diplomitoporus, Junghuhnia, and Steccherinum, indicating the phylogenetic importance of the rot type in the classification of the Polyporaceae.

  • PDF

Taxonomic Study of Peltigera (Peltigeraceae, Ascomycota) in Korea

  • Wei, Xin Li;Wang, Xin Yu;Koh, Young-Jin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2009
  • A taxonomic study of Peltigera in South Korea was performed. The phylogenetic analysis based on nr DNA internal transcribed spacer sequences suggests that Peltigera is a well-supported monophyletic group. Important characteristics are the phycobiont type of thallus and the vein type at the lower cortex (wide and flat, or narrow and ridged). The vertical or horizontal arrangement of the apothecia is also important in distinguishing species in this genus. Eleven species of Peltigera were revealed and confirmed, which included one new record, P. elisabethae. A description of each species is presented with morphological, anatomic, and chemical characteristics, and comparisons between similar species are made. A key to the species is also presented.

The complete chloroplast genome sequence of Dracocephalum rupestre (Lamiaceae)

  • Young-Soo KIM;Sang-Chul KIM;Young-Ho HA;Hyuk-Jin KIM
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.4
    • /
    • pp.269-274
    • /
    • 2022
  • Dracocephalum rupestre Hance is a perennial herb distributed across China, Mongolia, and Korea. This study reports the first complete chloroplast genome sequence of D. rupestre. The plastome is 151,230 bp long and exhibits a typical quadripartite structure comprising a large single-copy region of 82,536 bp, a small single-copy region of 17,408 bp, and a pair of identical inverted repeat regions of 25,643 bp each. It contains 130 genes, comprising 85 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis of D. rupestre and related species of Lamiaceae showed that the genus Dracocephalum is a monophyletic group, and D. rupestre is most closely related to D. psammophilum.

The complete chloroplast genome of Polygonatum falcatum (Asparagaceae)

  • CHOI, Tae-Young;YUN, Se-Hyun;LEE, Soo-Rang
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.1
    • /
    • pp.80-83
    • /
    • 2022
  • Polygonatum falcatum is a perennial herb distributed in East Asia. We determined the characteristics of the complete chloroplast genome in P. falcatum for the first time, with a de novo assembly strategy. The chloroplast genome was 154,579bp in length harboring 87 protein coding genes, 38 tRNA genes and eight rRNA genes. It exhibits typical quadripartite structure comprising a large single-copy (LSC) (83,528bp), a small single-copy (SSC) (18,457bp) and a pair of inverted repeats (IRs) (26,297bp). Phylogenetic analysis of 16 chloroplast genomes from Asparagaceae reveals that the genus Polygonatum is a monophyletic group and that P. falcatum is clustered together with the congener, P. odoratum.

Palynological contributions to the taxonomy of family Oleaceae, with special empahsis on genus Forsythia (tribe Forsytheae)

  • Lee, Sangtae
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.3
    • /
    • pp.175-181
    • /
    • 2011
  • Traditionally, the Oleaceae has been divided into subfamilies Oleoideae and Jasminoideae. In the present paper, the taxonomical results so far made on the family were reviewed on the basis of palynology. The subfamilial classification is not well supported palynoligically, because both Myxopyrum of Jasminoideae and Comoranthus of Oleoideae having foveolate surface are well distinguished from the rest of the family having reticulate surface. The recent subfamily Nyctanthoideae (Takhtajan, 1977) including the monotypic Nyctanthus, was suggested to be included within the Jasminoideae although its closest relative on the palynological basis is different from that on the molecular basis. Tribal classification systems of the Jasminoideae are not well supported palynologically on the basis of surface character: presence or absence of bands on the mural ridge surface of the reticulum. On the basis of palynology, tribe Forsythiae including Abeliophyllum, Fontanesia, and Forsythia is monophyletic, and Fontanesia is well distinguished from the rest two. Korean species of Forsythia is divided into two: Forsythia koreana group and F. ovata-nakaii-saxatilis group. Recent discovery of F. saxatilis at a locality of F. ovata raised a question if the distinction between the two species on the basis of hairiness would be right. In the recent molecular studies, F. saxatilis var. lanceolata seems to be identified as F. saxatilis. Molecular studies showed that F. saxatilis (seemingly var. lanceolata or var. pilosa) is close to F. koreana. The fact in which the molecular result showed a close relationship between F. saxatilis varieties and F. koreana, is controversial to the result by floral and vegetative morphology. An intensive taxonomic study of these taxa would be needed.

Phylogenetic Analysis of Genus Sporobolomyces Based on Partial Sequences of 26S rDNA

  • Hong, Soon-Gyu;Chun, Jong-Sik;Nam, Jin-Sik;Park, Yoon-Dong;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.363-366
    • /
    • 2000
  • The sequences of the D1/D2 region of 26S rDNA from seven Sporobolomyces species, Bensingtonia subrosea, and Rhodosporicium toruloides were determined and compared with those from representatives of the genera Leucosporidium, Rhodosporidium, Rhodotorula, and Sporidiobolus. The five species of Sporobolomyces analyzed were distantly related to a monophyletic clade consisting of species of Sporidiobolaceae and Sporobolomycetaceae. Sporobolomyces falcatus was found to be closely related to Tremella exigua. The members of Sporidiobolaceae and Sporobolomycetaceae were divided into four groups. Group 1 was composed of Leucosporidium scottii and two Rhodotorula species, and group 2 contained three Rhodotorula species. Group 3 was designeate as the Sporobolomyces/Sporidiobolus core group, as it contained Sporidiobolus johnsonii, the type species of Sporidiobolus and the teleomorphic state of Sporobolomyces salmonicolor (the type species of Sporobolomyces). Group 4, named the Rhodotorula/Rhodosporidium core group, included Rhodosporidium toruloides and Rhodotorula glutinis, the type species of the genera Fhodosporidium and Rhodotorula, respectively. The four groups were differentiated on the basis of their physiological characteristics including the assimilation of D-glucosamine, glucuronate, 2-keto-gluconate, L-arabinitol, raffinose, methyl-$\alpha$-glucoside, and satrch. The taxonomy of the genera Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces will require a major revision when more data becomes available.

  • PDF