• Title/Summary/Keyword: monomer reduction

Search Result 53, Processing Time 0.023 seconds

Membrane fouling reduction by low temperature plasma treatment

  • 강민수;김성수;전배혁
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.56-58
    • /
    • 1997
  • 최근 polyolefin계열의 고분자 분리막이 많이 사용되고 있는데 특히 그 중 polypropylene막은 특성상 내약품성 및 내열성이 뛰어나 막 손상이나 성능 저하가 비교적 적은 고분자 막으로 평가되고 있다. 그러나 재질의 소수성 특성 때문에 심각한 fouling을 유발하게 되어 이를 방지하기 위해 막 표면을 hydrophilic agent로 개질 시켜 fouling을 제어하는 기술이 진행되고 있다. 일반적으로 막 재질을 개질 시키기 위하여 sulfonating agents, ozone, 그리고 hydrophilic monomer등을 grafting하는 방법들이 사용되고 있는데, 이는 공정상의 어려움이 있고 완벽한 친수성의 부여를 기대하기가 어렵다. 또한 막 기공 구조의 변화와 붕괴를 초래한다는 단점이 있다. 이밖에 hydrophilizing agent 등을 이용하여 wetting시킴으로써 일시적인 친수화 처리를 하는 방법이 있다. 그러나 이 방법은 membrane matrix로 부터 hydrophilizing agent가 새어 나가므로 영구적으로 사용할 수 없으며, 특히 의료용 분리막으로 이용될 경우 유출된 hydrophilizing agent가 cell membrane을 공격하여 cell 분해와 같은 인체에 해로운 결과를 초래하기 때문에 부적당하다. 최근 들어 저온 plasma를 이용한 표면 개질의 방법이 연구되고 있는데, 이는 plasma가 고분자 물질의 구조나 화학적 반응성과는 상관없이 모든 고분자 물질의 표면을 일정하게 개질 시킬 수 있으며 여타의 다른 방법들과는 달리 막 제조시 residual solvent의 문제점과 swelling의 문제점들이 발생하지 않는 장점 때문에 최근 각광받고 있는 기술 중의 하나이다. 또한 다른 방법에 비해 막과 plasma와의 강한 흡착력 때문에 영구적 친수성을 가지게 할 수 있다. 본 연구에서는 저온 plasma를 이용한 표면 개질이 막의 친수성 향상 및 fouling 방지에 미치는 영향에 대하여 조사하였다.

  • PDF

Application of SiO2 nanocomposite ferroelectric material in preparation of trampoline net for physical exercise

  • Zhanguo Su;Junyan Meng;Yiping Su
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.355-362
    • /
    • 2023
  • Physical exercise, especially intense exercise and high intensity interval training (HIIT) by trampoline, can lead to muscle injuries. These effects can be reduced with intelligent products made of nanocomposite materials. Most of these nanocomposites are polymers reinforced with silicon dioxide, alumina, and titanium dioxide nanoparticles. This study presents a polymer nanocomposite reinforced with silica. As a result of the rapid reaction between tetraethyl orthosilicate and ammonia in the presence of citric acid and other agents, silica nanostructures were synthesized. By substituting bis (4-amino phenoxy) phenyl-triptycene in N, N-dimethylformamide with potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C, the diamine monomer bis (4-amino phenoxy) phenyl-triptycene is prepared. We synthesized a new polyaromatic (imide) with triptycene unit by sol-gel method from aromatic diamines and dianhydride using pyridine as a condensation reagent in NMP. PI readily dissolves in solvents and forms robust and tough polymer films in situ. The FTIR and NMR techniques were used to determine the effects of SiO2 on the sol-gel process and the structure of the synthesized nanocomposites. By using a simultaneous thermal analysis (DTA-TG) method, the appropriate thermal operation temperature was also determined. Through SEM analysis, the structure, shape, size, and specific surface area of pores were determined. Analysis of XRD results is used to determine how SiO2 affects the crystallization of phases and the activation energy of crystallization.

Comparative Study on Mechanical Properties and Dimensional Stability of Staypak and Wood-Polymer Composites from Populus alba × P. Glandulosa wood (현사시나무로 제조(製造)된 열압축목재(熱壓縮木材)와 목재(木材)-고분자(高分子) 복합체(複合體) 재질(材質)의 비교연구(比較硏究))

  • Pak, Sang-Bum;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.14-34
    • /
    • 1985
  • One of the techniques for altering the properties of wood that has received considerable attention in the last twenty years is the formation of a wood-polymer composite (WPC) by irradiation and heat-catalyst polymerization of a monomer incorporated into the wood matrix. Wood-polymer composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC and Staypak. The species examined was Hyunsasi-Namoo (Populus alba ${\times}$ P. glandulosa) which had not been utilized yet. Methylmethacrylate (MMA) as monomer, benzoyl peroxide (BPO) as initiator and methyl alcohol as bulking agent were used. The monomer containing BPO was impregnated into wood pieces by the dipping and the vacuum process for 2 hours. After impregnation, the treated samples were polymerized on the hot press with pressure and heat-catalyst methods. The results obtained were summarized as follows 1. The monomer loading into wood by the dipping process was 12.13 percent and 29.99 percent by the vacuum. The polymer loading into wood by the dipping process was 6.79 percent and 15.44 percent by the vacuum. 2. Comparing with Staypak, antishrink efficiency (ASE) of WPC was 12.5 to 13.6 percent on the radial direction and 14.70 to 18.63 percent on the tangential. Antiswelling efficiency (AE) was 14.40 to 17.22 percent on the radial direction and 17.18 to 42.1 8 to 42.14 percent on the tangential. Reduction in water absorptivity (RWA) was 8.19 to 15.5 percent. As a whole, the vacuum process was better than the dipping. 3. The specific gravity of control, Staypak and WPC were 0.44, 0.66 and 0.61 to 0.62, respectively. 4. In the bending strength test, the strength in case that the load direction is on the radial surface was greater than that which the load direction is on the tangential. 5. Increasing rate of stress at proportional limit in compression perpendicular to grain was 72.26 percent in case of WPC by the dipping process, 78.93 percent by the vacuum and 99.09 percent in case of Staypak.

  • PDF

Synthesis and Electrochemical Properties of Polymeric Pentadentate Schiff Base Co (Ⅱ), Ni (Ⅱ), and Cu (Ⅱ) Complexes (Polymer 다섯자리 Schiff Base Co(Ⅱ), Ni(Ⅱ) 및 Cu(Ⅱ) 착물들의 합성과 전기화학적 성질)

  • Choe, Yong Guk;Choe, Ju Hyeong;Park, Jong Dae;Sim, U Jong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 1994
  • Polymeric complexes such as M(Ⅱ)(PVPS)(SND), M(Ⅱ)(PVPS)(SOPD) have been prepared with monomeric complexes, M(Ⅱ)(SND) and M(Ⅱ)(SOPD)[M: Co(Ⅱ), Ni(Ⅱ), and Cu(Ⅱ)] and polymer PVPS. These complexes have been indentified by elemental analysis, spectroscopy, and T.G.A. From the results, it was found that M(Ⅱ)(PVPS)(SND), M(Ⅱ)(PVPS)(SOPD) complexes were penta-coordinated configuration. Electrochemical properties of these complexes studied by cyclic voltammetry and differential pulse polarography in 0.1 M TEAP-DMF solution at glassy carbon electrode. Co(Ⅱ)(PVPS)(SND) and Co(Ⅱ)(PVPS)(SOPD) showed irreversible two step reduction, such as Co(Ⅲ)/Co(Ⅱ) and Co(Ⅱ)/Co(Ⅰ), and Ni(Ⅱ)(PVPS)(SND), Ni(Ⅱ)(PVPS)(SOPD), Cu(Ⅱ)(PVPS)(SND), and Cu(Ⅱ)(PVPS)(SOPD) complexes showed irreversible one step reduction, such as Ni(Ⅱ)/Ni(Ⅰ) and Cu(Ⅱ)/Cu(Ⅰ), respectively.

  • PDF

THE EFFECT OF REMOVAL OF RESIDUAL PEROXIDE ON THE SHEAR BOND STRENGTH AND THE FRACTURE MODE OF COMPOSITE RESIN-ENAMEL AFTER TOOTH BLEACHING (생활치 표백술 후 수종의 자유 산소기 제거제 처리가 복합 레진-법랑질 전단 접착 강도 및 파절 양상에 미치는 영향)

  • 임경란;금기연;김애리;장수미
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.399-408
    • /
    • 2001
  • Tooth bleaching has been prevailing recently for its ability to recover the color and shape of natural teeth without reduction of tooth material. However, it has been reported that bleaching procedure adversely affects the adhesive bond strength of composite resin to tooth. At the same time the bond strength was reported to be regained by application of some chemical agents. The purpose of this in vitro study was to investigate the effect of the removal of residual peroxide on the composite- enamel adhesion and also evaluated fracture mode between resin and enamel after bleaching. Sixty extracted human anterior and premolars teeth were divided into 5 groups and bleached by combined technique using of office bleaching with 35 % hydrogen peroxide and matrix bleaching with 10% carbamide peroxide for 4 weeks. After bleaching, the labial surfaces of each tooth were treated with catalase, 70% ethyl alcohol, distilled water and filled with composite resin. Shear bond strength was tested and the fractured surfaces were also examined with SEM. Analysis revealed significantly higher bond strength values. (p<0.05) for catalase-treated specimens, but water-treated specimens showed reduction of bond strength, alcohol- treated specimens had medium value between the two groups(p<0.05). The fracture mode was shown that the catalase group and the alcohol group had cohesive failure but the water sprayed group had adhesive failure. It was concluded that the peroxide residues in tooth after bleaching seems to be removed by gradual diffusion and the free radical oxygen from peroxide prevents polymerization by combining catalyst in the resin monomer. Therefore it may be possible to eliminate the adverse effect on the adhesion of composite resin to enamel after bleaching by using water displacement solution or dentin bonding agent including it for effective removal of residual peroxide.

  • PDF

Estrogenic Reduction of Styrene Monomer Degraded by Phanerochaete chrysosporium KFRI 20742

  • Lee Jae-Won;Lee Soo-Min;Hong Eui-Ju;Jeung Eui-Bae;Kang Ha-Young;Kim Myung-Kil;Choi In-Gyu
    • Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.177-184
    • /
    • 2006
  • The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99 % during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in Raoultella ornithinolytica BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway

  • Yuan, Haibo;Liu, Yanfeng;Lv, Xueqin;Li, Jianghua;Du, Guocheng;Shi, Zhongping;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1999-2008
    • /
    • 2018
  • The compound 2,5-furandicarboxylic acid (FDCA), an important bio-based monomer for the production of various polymers, can be obtained from 5-hydroxymethylfurfural (HMF). However, efficient production of FDCA from HMF via biocatalysis has not been well studied. In this study, we report the identification of key genes that are involved in FDCA synthesis and then the engineering of Raoultella ornithinolytica BF60 for biocatalytic oxidation of HMF to FDCA using its resting cells. Specifically, previously unknown candidate genes, adhP3 and alkR, which were responsible for the reduction of HMF to the undesired product 2,5-bis(hydroxymethyl)furan (HMF alcohol), were identified by transcriptomic analysis. Combinatorial deletion of these two genes resulted in 85.7% reduction in HMF alcohol formation and 23.7% improvement in FDCA production (242.0 mM). Subsequently, an aldehyde dehydrogenase, AldH, which was responsible for the oxidation of the intermediate 5-formyl-2-furoic acid (FFA) to FDCA, was identified and characterized. Finally, FDCA production was further improved by overexpressing AldH, resulting in a 96.2% yield of 264.7 mM FDCA. Importantly, the identification of these key genes not only contributes to our understanding of the FDCA synthesis pathway in R. ornithinolytica BF60 but also allows for improved FDCA production efficiency. Moreover, this work is likely to provide a valuable reference for producing other furanic chemicals.

Anti-Reflection Coating Technology Based High Refractive Index Lens with Ultra-Violet Rays Blocking Function (반사방지 코팅기술 기반 자외선 차단 기능의 고굴절률 안경렌즈)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.482-487
    • /
    • 2016
  • Ultra-violet rays are very harmful to eye health care. The blocking of ultra-violet rays and a reduction of optical reflection in the visible light range, which is to increase the share of transmitted light, and avoid the formation of ghost images in imaging, are important for the applications of polymer eyeglasses lenses. In this study, the high-refractive index polymer lenses, n=1.67, were fabricated by injection-molded method with the xylene diisocyanate monomer, 2,3-bis-1-propanethiol monomer, and benzotriazol UV absorber (SEESORB 709) mixture. To reduce the reflection of the polymer lens surfaces, multi-layer anti-reflection (AR) coatings were coated for both sides of the polymer lens using an E-beam evaporation system. The optical properties of the UV blocking polymer lens were characterized using a UV-visible spectrometer. The material properties of the thin films, which were composed AR coating layers, refractive index, and surface roughness, were analyzed by ellipsometry and atomic force microscopy. As a result, the fabricated polymer lens perfectly blocked ultra-violet rays below 395 nm with a blocking rate greater than 99%.

Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide

  • Lee, Ju-Yeon;Yang, Sung-Tae;Kim, Hyo-Jeong;Lee, Seung-Kyu;Jung, Hyun-Ho;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.586-592
    • /
    • 2009
  • The bactenecin is an antibacterial peptide with an intramolecular disulfide bond. We recently found that homodimeric bactenecin exhibits more potent antibacterial activity than the monomeric form and retains its activity at physiological conditions. Here we assess the difference in the modes of antibiotic action of homodimeric and monomeric bactenecins. Both monomeric and dimeric bactenecins almost completely killed both Staphylococcus aureus and E. coli within 10-30 min at concentrations of $8-16\;{\mu}M$. However, exposure to liposomes elicited an increase in the fluorescence quantum yield from a tryptophan-containing monomeric analog, while the homodimeric analog showed a significant reduction in fluorescence intensity. Moreover, unlike the monomer, the homodimer displayed apparent membrane-lytic activity enabling release of various sized dyes from liposomes, and rapidly and fully depolarized the S. aureus membrane. Together, our results suggest that homodimeric bactenecin forms pores in the bacterial membrane, while monomeric one penetrates through the membrane to target intracellular molecules/organelles.

Effects of protein concentration and detergent on endotoxin reduction by ultrafiltration

  • Jang, Hyun;Kim, Hyo-Seung;Moon, Seung-Cheol;Lee, Young-Rae;Yu, Kang-Yeoul;Lee, Byeong-Kil;Youn, Hyun-Zo;Jeong, Young-Ju;Kim, Byeong-Soo;Lee, Sung-Ho;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.462-466
    • /
    • 2009
  • Lipopolysaccharide (LPS), found in the outer membrane of Gram negative bacteria, only exerts its toxic effects when in free form. LPS has three major parts, lipid A, the toxic component, along with a core polysaccharide and O-specific polysaccharide. LPS monomers are known to have molecular masses between 10 to 30 kDa. Under physiological conditions, LPS exists in equilibrium between monomer and vesicle forms. LPS removal by 100 kDa ultrafiltration was more efficient (99.6% of LPS removed) with a low concentration of protein (2.0 mg/ml) compared to a high concentration (20.1 mg/ml). In the presence of different detergents (0.5% Tween 20, 1.0% taurodeoxycholate and 1.0% Triton X-100), LPS removal was more efficient at low protein concentrations (2.0 mg/ml) compared to high protein concentrations (20.1 mg/ml).