• Title/Summary/Keyword: monofloral honey

Search Result 4, Processing Time 0.018 seconds

Antioxidant and Antibacterial Properties of Hovenia (Hovenia dulcis) Monofloral Honey Produced in South Korea

  • Park, Seung Hee;Kim, Young Ki;Kim, Moon Seob;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.221-230
    • /
    • 2020
  • The aim of this study was to evaluate the antioxidant and antibacterial activity of Hovenia (Hovenia dulcis) monofloral honey produced in Korea. To produce Hovenia monofloral honey, Hovenia trees were surrounded by a net house, and honeybees were breed there over a 20-day period. Hovenia monofloral honey contained more than 95% of Hovenia pollen and showed physicochemical properties in agreement with the international honey standard (Codex). The total phenolic and flavonoid contents of Hovenia monofloral honey ranged from a 24.82-27.00 mg gallic acid equivalent/100 g honey and a 0.41-0.46 mg quercetin equivalent/100 g honey, respectively. In addition, to evaluate the functional properties of Hovenia monofloral honey, the antioxidant activity of Hovenia monofloral honey was estimated by using the 1,1-diphenyl-2-picrylhydrazyl radical and the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay. Furthermore, Hovenia monofloral honey showed an antibacterial activity against foodborne gram positive (Listeria monocytogenes and Staphylococcus aureus) and gram negative bacteria (Salmonella Typhimurium and Escherichia coli O157:H7).

Hovenia Monofloral Honey can Attenuate Enterococcus faecalis Mediated Biofilm Formation and Inflammation

  • You, Ri;Kwon, Oh Yun;Woo, Hyun Joo;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.84-97
    • /
    • 2022
  • We evaluated the anti-biofilm formation and anti-inflammatory activity of Hovenia monofloral honey (HMH) against Enterococcus faecalis. Co-culture of HMH with E. faecalis attenuated the biofilm formation of E. faecalis on a polystyrene surface. In addition, HMH effectively eradicated the established E. faecalis biofilm. HMH significantly attenuated E. faecalis growth but did not affect the production of extracellular polymeric substances on E. faecalis, indicating that reduction of E. faecalis biofilm is a result of HMH-mediated killing of E. faecalis. Furthermore, we found that HMH can effectively attenuate E. faecalis-induced expression of a proinflammatory interleukin-8 (IL- 8) in HT-29 cells. Interestingly, treatment of HMH significantly attenuated the E. faecalis-mediated expression of Toll-like receptor-2 (TLR-2) and its adaptor molecules, myeloid differentiation primary response 88 (MyD88), in HT-29 cells. In addition, E. faecalis-induced mitogen-activated protein kinases (MAPKs) phosphorylation was significantly attenuated by HMH administration. Furthermore, HMH-mediated antiinflammatory efficacy (0.2 mg/mL of HMHs) had an equal extent of inhibitory efficacy as 5 μM of MyD88 inhibitor to attenuate E. faecalis-mediated IL-8 expression in HT-29 cells. These results suggest that HMH could effectively inhibit E. faecalis-mediated gastrointestinal inflammation through regulating the TLR-2/MyD88/MAPKs signaling pathways. Collectively, our data suggest that HMH could be developed as a potential natural agent to control E. faecalis-mediated biofilm formation and inflammation.

Chemical Composition of Korean Natural Honeys and Sugar Fed Honeys (천연꿀과 사양꿀의 성분 분석)

  • Kim, Se Gun;Hong, In Phyo;Woo, Soon Ok;Jang, Hye Ri;Jang, Jae Seon;Han, Sang Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, we investigated and compared some chemical properties of Korean natural honeys and sugar-fed honeys for their quality characteristics. The natural honey samples were monofloral from chestnut and acacia flowers, and the sugar-fed honey samples were collected from honeybees feeding on sugar cane and sugar beet. The chemical properties of the honey samples, such as moisture, total protein, total lipids, ash, carbohydrate, minerals, vitamins, and free amino acids were determined. The moisture content was $18.5{\pm}0.9%$ in natural acacia honey, $17.2{\pm}0.9%$ in natural chestnut honey, $19.6{\pm}0.9%$ in sugar cane-fed honey, and $24.8{\pm}%$ in sugar beet-fed honey. The total protein and ash contents were the highest in natural chestnut honey. Maltose and sucrose were not detected in natural honeys but were detected at 2~7% in sugar-fed honeys. The vitamin, mineral, and free amino acids contents of natural honeys were higher than sugar-fed honeys. The natural chestnut honey is the highest in honeys. These results confirmed that the quality of natural honey was better than that of sugar-fed honey. Also, the vitamin, mineral, and free amino acids contents are potential characteristics for distinguishing between natural and sugar-fed honeys.

Gelam and Nenas Honeys Inhibit Proliferation of HT 29 Colon Cancer Cells by Inducing DNA Damage and Apoptosis while Suppressing Inflammation

  • Wen, Christinal Teh Pey;Hussein, Saba Zuhair;Abdullah, Shailah;Karim, Norwahidah Abdul;Makpol, Suzana;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1605-1610
    • /
    • 2012
  • Gelam and Nenas monofloral honeys were investigated in this study for their chemopreventive effects against HT 29 colon cancer cells. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolim) assays showed more effective inhibition of colon cancer cells proliferation by Gelam honey with $IC_{50}$ values of 39.0 mg/ml and 85.5 mg/ml respectively after 24 hours of treatment. Alkali comet assays revealed both honeys increased DNA damage significantly in a dose dependent manner. In addition, annexin V-FITC/PI flow cytometry demonstrated that at $IC_{50}$ concentrations and above, both Gelam and Nenas honeys induced apoptosis significantlyat values higher than for necrosis (p<0.05). Measurement of prostaglandin $E_2$ ($PGE_2$) confirmed that Gelam and Nenas honeys reduced its production in $H_2O_2$ inflammation-induced colon cancer cells. In conclusion, our study indicated and confirmed that both Gelam and Nenas honeys are capable of suppressing the growth of HT 29 colon cancer cells by inducing apoptosis and suppressing inflammation.