• Title/Summary/Keyword: monocytes/macrophages

Search Result 109, Processing Time 0.025 seconds

Cutaneous Sterile Pyogranuloma/Granuloma Syndrome in an Old English Bulldog: Case Report

  • Yoon, Ji-Seon;Bae, Hyeona;Ahn, Soomin;Hong, Il-Hwa;Jung, Dong-In;Park, Jinho;Yu, DoHyeon
    • Journal of Veterinary Clinics
    • /
    • v.36 no.6
    • /
    • pp.345-348
    • /
    • 2019
  • A four-year old, indoor-living neutered male Old English Bulldog was presented for generalized ulcerative dermatitis. Generalized alopecia and multifocal papules and ulcers with crusting were observed mainly in the dorsal trunk. Cytology of the skin lesions revealed a pyogranulomatous inflammation comprising macrophages and nondegenerate neutrophils. Histopathology also revealed a nodular dermatitis characterized by mixed infiltration of monocytes and neutrophils involving the superficial and deep dermis. Neither of bacteria nor fungus was identified in microscopic exam and culture. From those findings, a diagnosis of cutaneous sterile pyogranuloma/granuloma syndrome (SPGS) was made. Treatment with immunosuppressive drugs of prednisone and cyclosporine was performed and visible ulcerative skin lesions were resolved after 4 weeks of initiation of therapy. Treatment with combination of cyclosporine and prednisone may be effective for the case of SPGS.

Costunolide Induces Differentiation of Human Leukemia HL-60 Cells

  • Choi, Jung-Hye;Seo, Bo-Rim;Seo, Seong-Hoon;Lee, Kyung-Tae;Park, Jae-Hoon;Park, Hee-Juhn;Choi, Jong-Won;Yoshie-Itoh;Miyamoto, Ken-Ichi
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.480-484
    • /
    • 2002
  • Costunolide has been reported to be a cytotoxic and chemopreventive agent. This work investigated the mechanism of the anti proliferative effect of costunolide and determined that it induced differentiation of the human leukemia cell line HL-60. Costunolide exhibited a potent antiproliferative activity against HL-60 cells. It was also found to be a potent inducer of differentiation in human leukemia derived HL-60 cells through the examination of differentiation markers, as assessed by the reduction of nitroblue tetrazolium, the increase in esterase activities and phagocytic activity, morphology change and the expression of CD14 and CD66b surface antigens. These results, accompanied by a decline in the expression of c-myc protein, suggest that costunolide induces differentiation of human leukemia cells to granulocytes and monocytes/macrophages lineage.

IL -12 Expression by Cefodizime As an Immuno-modulator

  • Joo, Seong-Soo;Kwon, Hee-Seung;Oh, Won-Sik;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.306.1-306.1
    • /
    • 2002
  • Cefodizime has originally been developed for treating infections as antibiotics. However. according to some of recent studies. cefodizime. a third generation cephalosporin. may potentially have the capability of stimulating chemotactic activity of neutrophils and monocytes as well as the strong immuno-modulator. In this study. we studied to learn about the expressive effect of dentritic cells and macrophage. With this background. We have studied to see if cefodizime can be a potential substance inducing an immunological function in dendritic cells and peritoneal macrophages. IL-12 activates NK cell and macrophage, and shows antiviral effect by excreting INF-${\gamma}$. In vitro. total RNAs were extracted from murine dentritic cell at 4, 8, 12, 24hr after the application of 10, 50, 100${\gamma}g$/ml of cefodizime wighout other stimulators. And we analyzed IL-12 mRNA using RT-PCR method. In conclusion. IL-12 mRNA was increased. and the results suggest that cefodizime activate TH1 cell induction, CTL differentiation as well as accelerating the increase of NK. LAK cell.

  • PDF

C-Reactive Protein Signaling Pathways in Tumor Progression

  • Eun-Sook Kim;Sun Young Kim;Aree Moon
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.473-483
    • /
    • 2023
  • Many cancers arise from sites of chronic inflammation, which creates an inflammatory microenvironment surrounding the tumor. Inflammatory substances secreted by cells in the inflammatory environment can induce the proliferation and survival of cancer cells, thereby promoting cancer metastasis and angiogenesis. Therefore, it is important to identify the role of inflammatory factors in cancer progression. This review summarizes the signaling pathways and roles of C-reactive protein (CRP) in various cancer types, including breast, liver, renal, and pancreatic cancer, and the tumor microenvironment. Mounting evidence suggests the role of CRP in breast cancer, particularly in triple-negative breast cancer (TNBC), which is typically associated with a worse prognosis. Increased CRP in the inflammatory environment contributes to enhanced invasiveness and tumor formation in TNBC cells. CRP promotes endothelial cell formation and angiogenesis and contributes to the initiation and progression of atherosclerosis. In pancreatic and kidney cancers, CRP contributes to tumor progression. In liver cancer, CRP regulates inflammatory responses and lipid metabolism. CRP modulates the activity of various signaling molecules in macrophages and monocytes present in the tumor microenvironment, contributing to tumor development, the immune response, and inflammation. In the present review, we overviewed the role of CRP signaling pathways and the association between inflammation and cancer in various types of cancer. Identifying the interactions between CRP signaling pathways and other inflammatory mediators in cancer progression is crucial for understanding the complex relationship between inflammation and cancer.

Immune-Enhancing Effect of Hibiscus syriacus Leaves in RAW264.7 Cells and Cyclophosphamided-induced Immunosuppressed Mice

  • Seung Woo Im;Hyeok Jin Choi;Ju-Hyeong Yu;So Jeong Park;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.92-92
    • /
    • 2022
  • Under the COVID-19 pandemic, interest in immune enhancement is increasing. Although the immune-enhancing activity of plants of the genus Hibiscus has been reported, there is no study on the immune-enhancing activity of H. syriacus. Thus, in this study, we investigated the immune-enhancing activity of Hibiscus syriacus leaves (HSL) in mouse macrophages, RAW264.7 cells, and immunosuppressed mice. HSL increased the production of immunostimulatory factors such as nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) and activated the phagocytosis in RAW264.7 cells. The HSL-mediated production of immunostimulatory factors was dependent on toll-like receptor 4 (TLR4), p38, and c-Jun N-terminal kinase (JNK) in RAW264.7 cells. In the immunosuppressed mouse model, HSL increased the spleen index, the levels of the cytokines, and the numbers of lymphocytes, neutrophils, and monocytes. Taken together, HSL may be considered to have immune-enhancing activity and be expected to be used as a potential immune-enhancing agent.

  • PDF

The role of 27-hydroxycholesterol in meta-inflammation

  • Yonghae Son;Eunbeen Choi;Yujin Hwang;Koanhoi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2024
  • 27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.

NF-${\kappa}B$ Dependent IL-8 Secretion from Lung Epithelial Cells Induced by Peripheral Blood Monocytes Phagocytosing Mycobacterium Tuberculosis (결핵균을 탐석한 말초혈액단핵구 배양상층액에 의해 유도되는 폐상피세포주에서의 NF-${\kappa}B$ 의존성 IL-8 분비기전)

  • Park, Jae-Seuk;Jee, Young-Koo;Choi, Eun-Kyong;Kim, Keun-Youl;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.4
    • /
    • pp.315-324
    • /
    • 2001
  • Background : IL-8 is a potent chemotactic cytokine that plays an important role in the host defense mechanism against M. tuberculosis by recruiting inflammatory cells to the site of the infection. Lung epithelial cells, as well as alveolar macrophages are known to produce IL-8 in response to M. tuberculosis. IL-8 gene expression is mainly regulated on the level of transcription by NF-${\kappa}B$. This study investigated whether or not A549 cells produce IL-8 in NF-${\kappa}B$ dependent mechanism in response to macrophages phagocytosing M. tuberculosis. Methods : Peripheral blood monocytes that were obtained from healthy donors were cultured for 24 h with M. tuberculosis and a conditioned medium(CoMTB) was obtained. As a negative control, the conditioned medium without M. tuberculosis (CoMCont) was used. A549 cells were stimulated with M. tuberculosis, CoMCont and CoMTB and the IL-8 concentration in the culture media was measured by ELISA. The CoMTB induced IL-8 mRNA expression in the A549 cells was evaluated using RT-PCR, and CoMTB induced $I{\kappa}B{\alpha}$ degradation was measured using western blot analysis. CoMTB induced nuclear translocation and DNA binding of NF-${\kappa}B$ was also examined using an electrophoretic mobility shift assay(EMSA), and the CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity was measured using a luciferase reporter gene assay. Results : CoMTB induced IL-8 production by A549 cells($46.8{\pm}4.8\;ng/ml$) was higher than with direct stimulation with M. tuberculosis ($6.8{\pm}2.9\;ng/ml$). CoMTB induced IL-8 mRNA expression increased after 2 h of stimulation and was sustained for 24 h. $I{\kappa}B{\alpha}$ was degraded after 10 min of CoMTB stimulation and reappeared by 60 min. CoMTB stimulated the nuclear translocation and DNA binding of NF-${\kappa}B$. The CoMTB induced NF-${\kappa}B$ dependent IL-8 transcriptional activity($13.6{\pm}4.3$ times control) was higher than either CoMCont($2.0{\pm}0.6$ times control) or M. tuberculosis ($1.4{\pm}0.6$ times control). Conclusion : A conditioned medium of peripheral blood monocytes phagocytosing M. tuberculosis stimulates NF-${\kappa}B$ dependent IL-8 production by the lung epithelial cells.

  • PDF

Upregulation of Lipopolysaccharide-Induced Interleukin-10 by Prostaglandin $A_1$ in Mouse Peritoneal Macrophages

  • Kim, Hyo-Young;Kim, Jae-Ryong;Kim, Hee-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1170-1178
    • /
    • 2008
  • The cyclopentenone prostaglandins (cyPGs) prostaglandin $A_1$ ($PGA_1$) and 15-deoxy-${\Delta}^{12,14}$-prostaglandin $J_2$ (15d-$PGJ_2$) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of $PGA_1$ in lipopolysaccharide (LPS)-induced expression of inter leu kin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-$PGJ_2$ inhibited expression of LPS-induced IL-10, whereas $PGA_1$ increased LPS-induced IL-10 expression. This synergistic effect of $PGA_1$ on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous $PGA_1$ and LPS treatment ($PGA_1$/LPS), and did not require new protein synthesis. The synergistic effect of $PGA_1$ was inhibited by GW9662, a specific peroxisome proliferator-activated receptor ${\gamma}(PPAR{\gamma})$ antagonist, and Bay-11-7082, a NF-${\kappa}B$ inhibitor. The extracellular signal-regulated kinases (ERK) inhibitor PD98059 increased the expression of $PGA_1$/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, $PGA_1$ inhibited LPS-induced ERK phosphorylation. The synergistic effect of $PGA_1$ on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and $PGA_1$ increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun $NH_2$-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of $PGA_1$ on LPS-induced IL-10 expression is NF-${\kappa}B$-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/JNK signaling pathways, and also associated with the $PPAR{\gamma}$ pathway. Our data may provide more insight into the diverse mechanisms of $PGA_1$ effects on the expression of cytokine genes.

The Production and Correlation of Silica Induced Proinflammatory Cytokines and TGF-$\beta$ from Monocytes of Balb/C Mice (Balb/C mouse의 폐장대식세포에서 유리규산 자극에 의한 Proinflammatory Cytokine과 TGF-$\beta$의 생성 및 상관관계)

  • Ki, Shin-Young;Kim, Eun-Young;Kim, Mi-Ho;Uh, Soo-Taek;Kim, Yong-Hoon;Park, Choon-Sik;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.823-834
    • /
    • 1998
  • Background: Chronic inhalation of silica induces the lung fiborsis. The alveolar macrophages ingest the inhaled silica; they liberate the pro-inflammatory cytokines such as IL-1$\beta$, IL-6, TNF-$\alpha$ and fibrogenic cytokines, TGF-$\beta$ and PDGF. Cytokines liberated from macrophage have pivotal role in pulmonary fibrosis. There is a complex cytokine network toward fibrosis. However, the exact roles and the interaction among the proinflammatory cytokines and TGF-$\beta$, a fibrogenic cytokine, have not been defined, yet. In this study, we investigated silica induced IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ production and the effect of IL-1$\beta$, IL-6, TNF-$\alpha$ on the production of TGF-$\beta$ from lung macrophages of Balb/C mice. Method: We extracted the lung of Balb/C mice and purified monocytes by Percoll gradient method. Macrphages were stimulated by silica ($SiO_2$) in the various concentration for 2, 4, 8, 12, and 24 hours. The supernatants were used for the measurement of protein levels by bioassay, and cells for the levels of mRNA by in situ hybridization. Results: The production of IL-6 was not observed till 4 hours, and reached the peak levels at 8 hours after stimulation of silica. The production of TNF-$\alpha$ increased from 2 hours and reached the peak levels at 4 hours after stimulation of silica. The spontaneous TGF-$\beta$ production reached the peak levels at 24 hours. TNF-$\alpha$ upregulated the silica induced TGF-$\beta$ production. Silica induced TGF-$\beta$ production was blocked by pretreated anti-TNF-$\alpha$ antibody. In situ hybridization revealed the increased positive signals at 4 hours in IL-6, at 4 hours TNF-$\alpha$ and 12 hours in TGF-$\beta$. Conclusion: The results above suggest that silica induced the sequential production of IL-6, 1NF-$\alpha$ and TGF-$\beta$ from macrophages and TNF-$\alpha$ upregultaes the production of TGF-$\beta$ from silica-induced macrophages.

  • PDF

The Effect of Haptoglobin on Expression of Inflammatory Cytokines in 3T3-L1 Preadipocytes. (3T3-L1 지방전구세포에서 합토글로빈에 의한 염증성 cytokine 발현 조절)

  • Cho, Jin-Kyung;Kim, Nam-Hoon;Oh, Mi-Kyung;Park, Seon-Joo;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.537-541
    • /
    • 2008
  • White adipose tissue is now recognized as an important endocrine organ which secretes various signal factors and proteins termed 'adipokine'. Haptoglobin (Hp), which has been known as an acute phase protein, belongs to the adipokine. However, the function of Hp in adipose tissue remains unclear. To verify the role of Hp in preadipocytes, in this study, 3T3-L1 preadipocyte cells were stably transfected with human Hp gene and Hp-overexpressing cells were made. The Hp had no effect on cell growth of preadipocytes. By RT-PCR and Western blot analysis, the Hp inhibited gene expression of IL-6 and COX-2 and enhanced HO-1 synthesis in preadipocytes. Moreover, invasion assay showed the Hp suppressed migration of monocytes to preadipocytes. These findings suggest that the Hp may inhibit an inflammatory reaction in adipose tissue by regulating the expressions of pro-inflammatory and anti-inflammatory mediators, and by repressing monocytes/macrophages infiltration.