• Title/Summary/Keyword: monochloramine

Search Result 17, Processing Time 0.02 seconds

The characteristics of chloramine formation and decay with pH variation (pH 변화에 따른 클로라민 생성과 분해 특성)

  • 조관형;김평청;우달식;조영태
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.347-353
    • /
    • 2002
  • This study was conducted to investigate the characteristics of chloramination as a secondary disinfection in a drinking water distribution system. At the range from pH 6 to pH 8, monochloramine was predominant with a trace of dichloramine, and the free chlorine was detected after breakpoint. At $25^{\circ}C$, the breakpoints of pH 6, 7 and 8 appeared when the weight ratios of chlorine to ammonia nitrogen were 11:1, 9:1 and 10:1 respectively, and the peak points on the breakpoint curves at pH 6, 7 and 8 were in the Cl$_2$ / NH$_3$-N ratio of 9:1, 6:1 and 5:1 respectively. As pH increased from 6 to 8, maximum point of monochloramine on the breakpoint curve was moved from 7:1 to 5:1 in the weight ratio of chlorine to ammonia nitrogen. The maximum concentration of monochloramine was formed at the pH values of 7~8 and in the Cl$_2$ / NH$_3$-N ratio below 5:1. As the Cl$_2$/NH$_3$-N ratio increased and the pH lowered, chloramines decay proceeded at an increased rate, and residual chloramines lasted longer than the residual free chlorine. The monochloramine and the dichloramine were formed at pH 6, and then the dichloramine continued increasing with contact time.

Electron Microscopic Studies on the Morphology and Ultrastructures in Campylobacter jejuni treated with Physico-chemical Disinfectants (이화학적 살균제로 처리한 Campylobacter jejuni의 세포 형타와 미세구조에 대한 전자현미경적 연구)

  • Yun, Man-Seok;Oh, Hak-Shik;Kim, Chi-Kyung
    • Applied Microscopy
    • /
    • v.19 no.2
    • /
    • pp.17-26
    • /
    • 1989
  • The cells of Campylobacter jejuni treated with physical or chemical disinfection agents were comparatively examined by scanning and transmission electron microscopies for their morphological features and internal ultrastructures. The normal cells of C. jejuni, showed typical spiral rod shapes. The ribosomes, nucleoids, and other cellular constituents were observed to be distributed evenly throughout the cytoplasm. The cells treated with heat or UV-light were changed to spherical or irregular shapes and their cell envelopes were destroyed to form ghost cells by liberating their cytoplasmic components. The cells treated with chlorine or monochloramine were also changed into irregular round shapes. The chlorinated cells showed very rough surface structures with many blob-like protrusions, while the surface of the monochloramine-treated cells appeared to be relatively smooth.

  • PDF

Efficiency of Different Disinfectants against Biofilm on Carbon Steel Pipe and Carbon Utilizing Ability of Biofilm (소독제에 따른 생물막 살균효율과 생물막 미생물집단의 탄소이용능 비교)

  • Lee, Dong-Geun;Lee, Jae-Hwa;Lee, Sang-Hyeon;Ha, Bae-Jin;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.579-583
    • /
    • 2006
  • The influence of disinfectant on bacterial concentration and carbon usage patterns by Biolog GN plates were investigated for biofilm on carbon steel pipe. Heterotrophic bacterial concentrations were not different among non-, monochloramine- (1.0, 1.5 mg/l) and free chlorine- (0.5, 1.0 mg/l) treated samples (P = 0.56, ANOVA). However treatment of 1.5 mg/l free chlorine and 2.0 mg/l monochloraime showed significantly lower densities than control (P < 0.01, ANOVA). By the stepwise increasement of disinfectant concentration, the carbon usage activities of biofilm microflora were decreased after increase without the decrease of bacterial concentration, following reduction of cell density. Carbon usage patterns were qualitatively and quantitatively different with similar bacterial concentrations. Principal component analysis suggested that type and concentration of disinfectant were main factors on the usage of carbons. Our result suggest that the differences of bacterial communities were different among the samples and the need of monochloramine for the reduction of biofilm in drinking water.

A Study on the Characteristics of Chloramination as an Alternative Disinfectant in Drinking Water (클로라민의 소독특성에 관한 연구)

  • Kim, Pung-Chung;Woo, Dal-Sik;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.77-82
    • /
    • 1999
  • This study was carried to investigate the characteristics of chloramination as a disinfection in drinking water distribution system. The raw water comes from midstream of Han river. In the range of pH 6~8, preformed chloramine of $Cl_2/NH_3-N$ ratio 5:1 had the HPC inactivation of more than 99% with lower pH and shorter contact time and available chloramine residual was decreased a little. In the chloramines of $Cl_2/NH_3-N$ ratio 3:1~5:1, the higher $Cl_2/NH_3-N$ ratio, the much inactivation of HPC was increased, but as contact time was longer, HPC inactivation of $Cl_2/NH_3-N$ ratio 3:1~5:1 were equaled. Bactericidal activity of three chlorine and postammoniation was influenced by free available chlorine completely and that of preammoniation was as follows : free chlorine ${\fallingdotseq}$ postammoniation>preammoniation>preformed chloramine.

  • PDF

A Study on Interferences of Monochloramine in the Measurement of Ammonia by Phenate Method (Phenate 법으로 암모니아 분석시 염화아민의 방해 작용에 관한 연구)

  • Yoon, Je-Yong;Lee, Sang-Duck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • The determinations of ammonia in water for drinking purpose served as one basis of judging the sanitary quality of water for a great many years. However, presently ammonia regulation varies depending on countries. In USA and Canada, ammonia is added to water for chloramination process. However, for korea, there is ammonia regulation of treated water in Korea which should not exceed 0.5mg/l as $NH_3-N$. There was a report exceeding 0.5mg/l of ammonia in chlorinated water when the famous drinking water contamination episode happened in the downstream of Nadong River, 1994. With lack of sewer distribution system and treatment plants of domestic wastes, many water treatment plants have a difficulty of complying with ammonia regulation in treated water. Breakpoint chlorination is usually performed to get rid of ammonia. The method which is allowed to measure ammonia in Korea is Phenate method. However, it would be undesirable to use Phenate method for measuring ammonia in chlorinated water if Phenate method would not differentiate ammonia from chloramine. A good possibility of interferences in measurement of ammonia exists because Phenate method include the step of the formation of chlorine and would not differentiate chloramine which is formed as a result of reaction between chlorine and ammonia. This study was on inaccuracy of Phenate method for measuring ammonia of chlorinated water when chloramine and ammonia coexist. This study found that Phenate method measured all chlormaine as ammonia. Ammonia measurement by ion chromatography confirmed this results. Finally, the result from this study suggests that ammonia measurement by Phenate method in chlorinated water should be revised accordingly.

  • PDF

Surface Characteristics of Fouling Resistant Low-Pressure RO Membranes (상업용 내오염성 저압 RO막의 표면 특성 분석)

  • Hong, Seungkwan;Taylor, James;Norberg, David;Lee, Jinwoo;Park, Chanhyuk;Kim, Hana
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, five commercially available fouling resistant low-pressure RO membranes were investigated for the treatment of seasonally brackish surface water with high organic content (${\approx}24mg/L$). The membranes investigated are LFC-1 (Hydranautics), X20 (Trisep), BW30FR1 (FilmTec), SG (Osmonics), and BE-FR (Saehan). The results of surface characterization revealed that each of these membranes has one or two unique surface characteristics to minimize the adherence of the fouling materials to the membrane. Specifically, the LFC1 membrane features a neutral or low negative surface to minimize electrostatic interactions with charged foulants. The X20, on the other hand, shows a highly negatively charged surface, and thus, is expected to perform well with feed waters containing negatively charged organics and colloids. The BW30FR1 exhibits a relatively neutral and hydrophilic surface, which could be beneficial for lessening organic and/or biofouling. The SG membrane has a smooth surface that makes it quite resistant to fouling, particularly for colloidal deposition. Lastly, BE-FR membrane demonstrated a medium surface charge and a slightly higher hydrophobicity. In the pilot study, all of the four membranes experienced a gradual increase in MTC (water mass transfer coefficient or specific flux) over time, indicating no fouling occurred during the pilot study. The deterioration of permeate water quality such as TDS was also observed over time, suggesting that the integrity of the membranes was compromised by the monochloramine used for biofouling control.

Application of Epifluorescence, Microscopy for Measurement of Bacterial Population in Water Supplies (용수중(用水中) 세균계수(細菌計數)를 위한 형광검경법(螢光檢鏡法)의 응용(應用))

  • Rhee, Young-Hwan;Shin, Seung-Yee
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 1982
  • Methods for the measurement of aquatic bacteria can be divided into two groups. The first group of these methods is based on the 'replicon' concept that live bacterial cells, when diluted and transferred to a suitable medium, produce colonies. These methods distinguish living from dead bacteria, but they massively underestimate bacterial numbers. The second group of enumeration methods uses visual counting technique using specific apparatus such as a microscope. These methods are generally direct and simple, but it is very hard to distinguish between live and dead bacteria and between small particle and bacteria. Recently developed technique in staining methods has provided a reliable method of visual determination of aquatic bacteria. This uses epifluorescence microscopy to measure the total bacterial population. In order to present the fluorescence microscopy as a new methodology for the determination of bacterial numbers in water supplies, data were obtained from chlorine and monochloramine doses added to samples. Total counts by fluorescence microscopy were compared with standard plate count method. The total number of bacteria in water supplies can be determined with fluorescence microscopy. This technique allows better resolution of small bacteria and differentiation of particle from bacteria. Chloramine was found to persist longer in natural waters and prevent bacterial regrowth.

  • PDF