• Title/Summary/Keyword: mono-camera

Search Result 57, Processing Time 0.024 seconds

Mechanism for Cavitation Phenomenon in Mechanical Heart Valves

  • Lee Hwan-Sung;Taenaka Yoshiyuki
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1118-1124
    • /
    • 2006
  • Recently, cavitation on the surface of mechanical heart valve has been studied as a cause of fractures occurring in implanted Mechanical Heart Valves (MHVs). It has been conceived that the MHVs mounted in an artificial heart close much faster than in vivo sue, resulting in cavitation bubbles formation. In this study, six different kinds of mono leaflet and bileaflet valves were mounted in the mitral position in an Electro-Hydraulic Total Artificial Heart (EHTAH), and we investigated the mechanisms for MHV cavitation. The valve closing velocity and a high speed video camera were employed to investigate the mechanism for MHV cavitation. The closing velocity of the bileaflet valves was slower than that of the mono leaflet valves. Cavitation bubbles were concentrated on the edge of the valve stop and along the leaflet tip. It was established that squeeze flow holds the key to MHV cavitation in our study. Cavitation intensity increased with an increase in the valve closing velocity and the valve stop area. With regard to squeeze flow, the bileaflet valve with slow valve-closing velocity and small valve stop areas is better able to prevent blood cell damage than the monoleaflet valves.

Lane Detection for Adaptive Control of Autonomous Vehicle (지능형 자동차의 적응형 제어를 위한 차선인식)

  • Kim, Hyeon-Koo;Ju, Yeonghwan;Lee, Jonghun;Park, Yongwan;Jeong, Ho-Yeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.180-189
    • /
    • 2009
  • Currently, most automobile companies are interested in research on intelligent autonomous vehicle. They are mainly focused on driver's intelligent assistant and driver replacement. In order to develop an autonomous vehicle, lateral and longitudinal control is necessary. This paper presents a lateral and longitudinal control system for autonomous vehicle that has only mono-vision camera. For lane detection, we present a new lane detection algorithm using clothoid parabolic road model. The proposed algorithm in compared with three other methods such as virtual line method, gradient method and hough transform method, in terms of lane detection ratio. For adaptive control, we apply a vanishing point estimation to fuzzy control. In order to improve handling and stability of the vehicle, the modeling errors between steering angle and predicted vanishing point are controlled to be minimized. So, we established a fuzzy rule of membership functions of inputs (vanishing point and differential vanishing point) and output (steering angle). For simulation, we developed 1/8 size robot (equipped with mono-vision system) of the actual vehicle and tested it in the athletics track of 400 meter. Through the test, we prove that our proposed method outperforms 98 % in terms of detection rate in normal condition. Compared with virtual line method, gradient method and hough transform method, our method also has good performance in the case of clear, fog and rain weather.

  • PDF

Mono-Vision Based Satellite Relative Navigation Using Active Contour Method (능동 윤곽 기법을 적용한 단일 영상 기반 인공위성 상대항법)

  • Kim, Sang-Hyeon;Choi, Han-Lim;Shim, Hyunchul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.902-909
    • /
    • 2015
  • In this paper, monovision based relative navigation for a satellite proximity operation is studied. The chaser satellite only uses one camera sensor to observe the target satellite and conducts image tracking to obtain the target pose information. However, by using only mono-vision, it is hard to get the depth information which is related to the relative distance to the target. In order to resolve the well-known difficulty in computing the depth information with the use of a single camera, the active contour method is adopted for the image tracking process. The active contour method provides the size of target image, which can be utilized to indirectly calculate the relative distance between the chaser and the target. 3D virtual reality is used in order to model the space environment where two satellites make relative motion and produce the virtual camera images. The unscented Kalman filter is used for the chaser satellite to estimate the relative position of the target in the process of glideslope approaching. Closed-loop simulations are conducted to analyze the performance of the relative navigation with the active contour method.

Vision Sensor-Based Driving Algorithm for Indoor Automatic Guided Vehicles

  • Quan, Nguyen Van;Eum, Hyuk-Min;Lee, Jeisung;Hyun, Chang-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this paper, we describe a vision sensor-based driving algorithm for indoor automatic guided vehicles (AGVs) that facilitates a path tracking task using two mono cameras for navigation. One camera is mounted on vehicle to observe the environment and to detect markers in front of the vehicle. The other camera is attached so the view is perpendicular to the floor, which compensates for the distance between the wheels and markers. The angle and distance from the center of the two wheels to the center of marker are also obtained using these two cameras. We propose five movement patterns for AGVs to guarantee smooth performance during path tracking: starting, moving straight, pre-turning, left/right turning, and stopping. This driving algorithm based on two vision sensors gives greater flexibility to AGVs, including easy layout change, autonomy, and even economy. The algorithm was validated in an experiment using a two-wheeled mobile robot.

Localization for Mobile Robot Using Vertical Line Features (수직선 특징을 이용한 이동 로봇의 자기 위치 추정)

  • 강창훈;안현식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.937-942
    • /
    • 2003
  • We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

3D Depth Measurement System-based Unpaved Trail Recognition for Mobile Robots (이동 로봇을 위한 3차원 거리 측정 장치기반 비포장 도로 인식)

  • Gim Seong-Chan;Kim Jong-Man;Kim Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.395-399
    • /
    • 2006
  • A method to recognize unpaved road region using a 3D depth measurement system is proposed for mobile robots. For autonomous maneuvering of mobile robots, recognition of obstacles or recognition of road region is the essential task. In this paper, the 3D depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Therefore, the problem falls into a texture identification problem. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of unpaved trail are included in this paper.

Localization for Mobile Robot Using Vertical Lines

  • Kang, Chang-Hun;Ahn, Hyun-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.793-797
    • /
    • 2003
  • In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

  • PDF

An Algorithm for a pose estimation of a robot using Scale-Invariant feature Transform

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.517-519
    • /
    • 2004
  • This paper describes an approach to estimate a robot pose with an image. The algorithm of pose estimation with an image can be broken down into three stages : extracting scale-invariant features, matching these features and calculating affine invariant. In the first step, the robot mounted mono camera captures environment image. Then feature extraction is executed in a captured image. These extracted features are recorded in a database. In the matching stage, a Random Sample Consensus(RANSAC) method is employed to match these features. After matching these features, the robot pose is estimated with positions of features by calculating affine invariant. This algorithm is implemented and demonstrated by Matlab program.

  • PDF

Detection of Lane Marking Candidates by Using Scale-space (스케일-공간을 이용한 차선 마킹 후보 검출)

  • Yoo, Hyeon-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.43-53
    • /
    • 2013
  • Lane marking detection based on a mono camera sensor provides a low cost solution to both ITS (intelligent transportation systems) and DAS (driver assistant systems). A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue. Traditional approaches are mostly based on statistics or Hough transforms. However, the former approaches usually include many irrelevant detection areas, and the latter are not practical because actual lanes are not usually suitable for the approximation with linear or polynomial equations. In this paper, we focus on increasing the reliability of detection by reducing the detection of irrelevant areas while improving the detection of actual lane marking areas, which is usually a tradeoff for most conventional approaches. We use scale-space for that. Through experiments with real images obtained from various environments, we could achieve a significant improvement over traditional approaches.

vehicle Control Algorithm based on Depth Sensor Measurement System (거리센서 계측기반 이동물체의 인식 알고리즘)

  • Kim, Jong-Man;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.6-9
    • /
    • 2008
  • A 3D depth measurement system is proposed for mobile vehicles. Depth measurement system which is composed of a rotating mirror, a line laser and mono-camera is employed to detect depth, where the laser light is reflected by the mirror and projected to- the scene objects whose locations are to be determined. The obtained depth information is converted into an image. Such depth images of the road region represent even and plane while that of off-road region is irregular or textured. Road region is detected employing a simple spatial differentiation technique to detect the plain textured area. Identification results of the diverse situation of Non-linear trail are included in this paper.

  • PDF