• Title/Summary/Keyword: monitoring wells

Search Result 202, Processing Time 0.032 seconds

Analysis of Groundwater Level Changes Due to Earthquake in Jeju Island (For the Indonesian Earthquake with Magnitude 7.7 in 2010) (지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진))

  • Lee, Soo-Hyoung;Hamm, Se-Yeong;Ha, Kyoo-Chul;Kim, Yong-Cheol;Cheong, Beom-Keun;Ko, Kyung-Seok;Koh, Gi-Won;Kim, Gee-Pyo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.41-51
    • /
    • 2011
  • This study was conducted to investigate the relationship between groundwater level change and a large earthquake using the data of groundwater and seawater intrusion monitoring wells in Jeju Island. Groundwater level data from 13 observation wells were analyzed with a large earthquake. The Earthquake occurred at Sumatra, Indonesia (Mw = 7.7) on 13 June 2010, and groundwater level anomalies which seems to be related to the Earthquake were found in 6 monitoring wells. They lasted for approximately 16~27 minutes and the range of groundwater level fluctuations were about 1.4~2.4 cm. Coefficient of determination values for relationship between groundwater level change and transmissivity, and response time were calculated to be $R^2$ = 0.76 and $R^2$ = 0.96, respectively. The study also indicates that the high transmissivity of aquifer showed the high goundwater level changes and longer response time.

Characteristics of Water Levels and Occurrences of Thermal Groundwater at the Yuseong Spa Area (유성지구 지열수자원의 산출 및 수위변동 특성)

  • Moon, Sang-Ho;Ha, Kyoo-Chul;Kim, Yung-Sik;Cho, Sung-Hyeon
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.537-554
    • /
    • 2006
  • Water levels of thermal groundwater ($>30^{\circ}C$) were recorded from March 2002 to June 2006 at several monitoring wells within the Yuseong spa area. Using these data, we elucidated the long-term cyclic fluctuations of thermal groundwater levels with 1 year period. We also observed a noticeable water level variation with periods of 0.5, 1 and 7 days in most monitoring wells, which indicates relatively good hydraulic connectivity within the main hotspring area. By comparing water level variations among several wells, we found out that E-W and N-S trending geological structures should be an important control factor for emplacement and flow of thermal groundwater in the study area. It may be also inferred that geothermal source is highly associated with the hydraulic connectivity of aquifers at the Yuseong spa area.

Resilience Assessment for Aquifers close to Groundwater Wells in the Nakdong River Estuary (낙동강 하구 지하수 관정 주변 대수층의 리질리언스 평가)

  • Soonyoung Yu;Ho-Rim Kim;Eun-Kyeong Choi;Sung-Wook Kim;Dong-Woo Ryu;Yongcheol Kim
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.3
    • /
    • pp.12-28
    • /
    • 2023
  • Each national groundwater monitoring well showed distinct change patterns in groundwater levels and electrical conductivity (EC) in the Nakdong River Estuary, implying different external forces (EFs) on each well. According to the annual average data in 1997-2020, seawater was invaded into Well C. The desalination rate of -1,062 µS/cm/year represents the adaptive capacity of the well to seawater intrusion. The water levels and EC in Well E responded to precipitation, indicating the low absorptive capacity to climate changes. Meanwhile, Well B showed constant increases in water levels, suggesting that problems by rising groundwater should be considered in the study area where confined aquifers are overlaid by clay aquitards. The other wells showed consistent water levels and EC, indicating resilience to EFs. Here, resilience is the capacity of a well to resist changes by EFs, including the absorptive and adaptive capacity. The resilience of Wells E and F to climate changes was quantitatively compared using a resilience cost (RC). The RC showed Well F was more resilient than Well E, and the bedrock aquifer was more resilient than the alluvium aquifer, supporting the usefulness of RC. The resilience assessment against EFs (e.g., changes in land use and climate) helps sustainable groundwater management.

The Assessment of Stabilization of Open-dumping Landfill Leachate - A Case Study of Noeun Landfill - (비위생매립지 침출수의 안정화 평가 - 노은매립지 사례연구 -)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.115-124
    • /
    • 2004
  • To utilize a closed municipal solid waste landfill site in environmentally secure conditions, it is necessary to verify the stabilization level of landfill leachate. To assess leachate stabilization of an open-dumping municipal solid waste landfill (Noeun Landfill) which is located at the upper drainage basin of Namhan River which flows into Lake Paldang utilized for Seoul Metropolitan water supplies, the surrounding characteristics of the landfill site was surveyed. After then, leachate, groundwater and soil samples from this landfill were chemically analyzed, and the analysis results were evaluated by "The Criteria of Landfill Waste Stabilization(CLWS)", "Discharge Criteria of Landfill Leachate", "The Criteria of Domestic Use in Groundwater Quality", and "Soil Contamination Criteria" promulgated by Korean Ministry of Environment. The closed open-dumping landfill was equipped with the final soil cover, 3 groundwater monitoring wells and poor landfill gas extraction devices for the post-closure management of the landfill. BOD/CODcr ratios in leachate were less than or slightly higher than 1/10. This results seemed to imply that the leachate stabilization level of this landfill based on the CLWS was almost completed. Qualities of groundwater sampled from monitoring wells located at outside of landfill were adequate for "The Criteria of Domestic Use in Groundwater Quality". Finally, concentrations of soil contaminants that were likely to be influenced by this landfill site were adequate to "Soil Contamination Criteria".

Electrical Resistivity Survey for Hydrologic Monitoring in the Gwang-neung Experimental Forest - Preliminary Results (광릉 소유역의 수문 관측을 위한 전기비저항탐사 - 예비결과)

  • Choi In-Hyuk;Moon Sang-Ki;Woo Nam-Chil;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.98-106
    • /
    • 2005
  • Groundwater plays an important role in water and carbon cycles in Gwangneung forest watershed located in a complex landscape. Because groundwater affects electrical resistivity (ER) of underground materials, the depth to water table and water content in subsurface can be investigated through measuring ER. Accordingly, the ER survey has been employed more frequently in recent hydrological investigations. Quantitative applications of the results of ER survey will contribute significantly to the examination of water budget closure at various spatiotemporal scales. This paper presents the preliminary results of the ER survey conducted at Gwangneung forest watershed to determine proper locations and depths of monitoring wells. Such use of ER survey, in conjunction with an integrated geophysical investigation and geographic information system, can provide more effective examination of underground structure and optimal locations of monitoring wells to further our understanding of the role of groundwater.

Understanding the Groundwater System through the Long-term Monitoring - a case Study of Gwangneung Headwater Catchment (장기모니터링을 통한 지하수계의 이해 - 광릉소유역 사례 연구)

  • Lee, Jae-Min;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • Effects of climate change on groundwater system requires understanding the groundwater system in temporal and spatial scales through the long-term monitoring. In this study, the spatio-temporal variations of groundwater were analyzed through the continuous observation of water level, electrical conductivity (EC) and water temperature with automatic data-loggers and sampling in a Gwangneung catchment, Korea, for the four years from 2008 to 2011. Groundwater monitoring were performed at the nest-type wells, MW1 and MW2, located in upsteam and downstream of the catchment, respectively. During the survey period, both the total amount of annual precipitation and the frequency of concentrated rainfall have increased resulting in the elevation of runoff. Water level of MW1 showed no significant fluctuations even during the rainy season, indicating the confined groundwater system. In contrast, that of MW2 showed clear seasonal changes, indicating the unconfined system. The lag-time of temperature at both wells ranged from one to three months depending on the screened depths. Results of chemical analyses indicated that major water compositions were maintained constantly, except for the EC decreases due to the dilution effect. Values of the stable-isotope ratios for oxygen and deuterium were higher at MW2 than MW1, implying the confined system at the upstream area could be locally developed.

Time Series Change Characteristics of Unconfined Groundwater Wells Temperatures for Agricultural Water Use (농업용수 활용을 위한 비피압지하수관정 수온의 시계열 변동특성)

  • Park, Seung Ki;Jung, Nam Su
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.1
    • /
    • pp.13-23
    • /
    • 2016
  • There is a need to analyze unconfined groundwater behavior since the demand of groundwater use has been increasing. While unconfined groundwater temperature is tend to be affected by air temperature, it is hard to find an empirical study in South Korea. In this research, we try to determine the relationship between daily average air temperature and daily average groundwater temperature by time-sequential analysis of groundwater monitoring wells in Galshin basin in Yesan-Gun, Chungcheongnam-Do. In addition, models to estimate groundwater temperature from air temperature were developed. In this research 101-day moving average method with measured air temperature is used to estimate groundwater temperature. To verify the developed model, estimated values of average groundwater temperature with 101 moving average are compared to the measured data from September 10 2007 to September 9 2008. And, Nash-Stucliff Efficiency and Coefficient of Determination were 0.970 and 0.976, therefore it was concluded that the model allowing groundwater temperature estimation from air temperature is with reasonable applicability.

Soil CO2 Monitoring Around Wells Discharging Methane (메탄 유출 관정 주변의 토양 CO2 모니터링)

  • Chae, Gitak;Kim, Chan Yeong;Ju, Gahyeun;Park, Kwon Gyu;Roh, Yul;Lee, Changhyun;Yum, Byoung-Woo;Kim, Gi-Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.407-419
    • /
    • 2022
  • Soil(vadose zone) gas compositions were measured for about 3 days to suggest a method for monitoring and interpreting soil gas data collected around wells from which methane(CH4) is outflowing. The vadose zone gas samples were collected within 1 m around two test wells(TB2 and TB3) at Pohang and analyzed for CO2, CH4, N2 and O2 concentrations in situ. CO2 flux was measured beside TB2. In addition, gas samples from well head in TB2 and atmospheric air samples were collected for comparison. Carbon isotopes of CO213CCO2) of samples collected on the last day of the study period were analyzed in the laboratory. The two test wells (TB2 and 3) were 12.7 m apart and only TB3 was cemented to the surface. According to the bio-geochemical process-based interpretation, the relationships between CO2 and O2, N2, and N2/O2 of vadose zone gas were plotted between the lines of CH4 oxidation and CO2 dissolution. In addition, the CH4 concentrations of gas samples from the wellhead of the uncemented well (TB2) were 5.2 times higher than the atmospheric CH4 concentration. High CO2 concentrations (average 1.148%) of vadose zone gas around TB2 seemed to be attributed to the oxidation of CH4. On the other hand, the vadose zone CO2 around the cemented well(TB3) showed a relatively low concentration(0.136%). This difference indicates that the vadose zone gas(including CO2) around the CH4 outflowing well were strongly affected by well completion(cementing). This study result can be used to establish strategies for environmental monitoring of soil around natural gas sites, and can be used to monitor leakage around injection and observation wells for CO2 geological storage. In addition, the method of this study is useful for soil monitoring in natural gas storage and oil-contaminated sites.

Field Applicability of Design Methodologies for Groundwater Quality Monitoring Network

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.47-58
    • /
    • 1999
  • Protection of groundwater resources from contamination has been of increasing concern throughout the past decades. In practice, however, groundwater monitoring is performed based on the experience and intuition of experts or on the convenience. In dealing with groundwater contamination, we need to know what contaminants have the potential to threat the water quality and the distribution and concentration of the plumes. Monitoring of the subsurface environment through remote geophysical techniques or direct sampling from wells can provide such information. Once known, the plume can be properly menaged. Evaluation of existing methodologies for groundwater monitoring network design revealed that one should select an appropriate design method based on the purpose of the network and the avaliability of field information. Integer programming approach, one of the general purpose network design tools, and a cost-to-go function evaluation approach for special purpose network design were tested for field applicability. For the same contaminated aquifer, two approaches resulted in different well locations. The amount of information, however, was about the same.

  • PDF

지하수 수위 변동을 이용한 지하수 함양률 산정(전주-완주, 곡성 지역)

  • 조민조;하규철;이명재;이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.217-220
    • /
    • 2002
  • To investigate the conditions of groundwater resources In Jeonju, Wanju, and Goksung, a basic groundwater survey was performed. From the survey, various useful informations such as groundwater use, waterlevel distribution, water chemistry were obtained. This study focused on the analysis of the water levels, which were automatically monitored with pressure transducers or manually measured. The monitorings were conducted for both shallow wells completed in alluvial aquifers and deep wells in bedrock aquifers. The automatically monitored waterlevels for alluvial aquifer were also used for estimation of recharge in the study area. This study presents results of the investigation.

  • PDF