• Title/Summary/Keyword: monitoring time

Search Result 7,489, Processing Time 0.042 seconds

Tool Wear Monitoring System in CNC End Milling using Hybrid Approach to Cutting Force Regulation (하이브리드 방식의 절삭력 평준화를 통한 CNC 엔드 밀링에서의 공구 마모 모니터링 시스템)

  • Lee, Kang-Jae;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.20-29
    • /
    • 2004
  • A Tool wear monitoring system is indispensable for better machining productivity with guarantee of machining safety by informing the tool changing time in automated and unmanned CNC machining. Different from monitoring using other signals, the monitoring of spindle current has been used without requiring additional sensors on machine tools. For the reliable tool wear monitoring, current signal only of tool wear should be extracted from other parameters to avoid exhaustive analyses on signals in which all parameters are fused. In this paper, influences of force components of parameters on measured spindle current are investigated and a hybrid approach to cutting force regulation is employed for tool wear signal extraction in the spindle current. Finally, wear levels are verified with experimental results by means of real-time feedrate aspects changed to regulate the force component of tool wear.

  • PDF

IEC61850 Process Bus Based Distributed Power Quality Monitoring (IEC61850 프로세서 버스 기반 분산형 전력품질감시)

  • Park, Jong-Chan;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • In this paper, authors deal with an application of power quality monitoring using the Sampled Value which is described in the IEC61850 International Standard for substation communication. Firstly, while Merging Unit is designed as a process level device transmitting sensor data, the practical problems such as time delay compensation and optical fiber communication are issued. Secondly, the Sampled Value message which is proper to a power quality monitoring system is presented. Because the power quality monitoring system requests non time critical service comparing to protection and control applications, the Sampled Value service message structure is introduced to improve efficiency. At last, the power quality monitoring server having various power quality analysis functions is suggested to verify the performance of Merging Unit. With the diverse experiments, it is proved that the process bus distributed solution is flexible and economic for the power quality monitoring.

Development of Machine Tool Monitoring System Using OPC (OPC를 이용한 공작 기계 감시 시스템의 개발)

  • Tae H.C.;Jeong Y.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.564-567
    • /
    • 2005
  • For the application of monitoring system of the machine tool to industry, the requirements such as high reliability and low cost need to be satisfied. In this study, a reliable but inexpensive monitoring method for machine tool is introduced. To improve the monitoring reliability, several kinds of information related to machining and operation are selected; real-time video clip from USB camera, operation data and signal from CNC and feed motor torque. Especially, to improve the quality of real-time video clip, a camera housing is developed, it can significantly reduce the vibration effect and prevent from coolant and chip. The collected information are transferred to the monitoring terminals in remote sites using OPC and TCP/IP protocol over Ethernet, which give us convenience of development and interoperability.

  • PDF

Improvement of SWoT-Based Real Time Monitoring System (SWoT 기반 실시간 모니터링 시스템 개선)

  • Yu, Myung-han;Kim, Sangkyung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.7
    • /
    • pp.227-234
    • /
    • 2015
  • USN-based real-time monitoring systems, which receive raw data from sensor nodes and store the processed information in traditional servers, recently get to be replaced by IoT(Internet of Things)/WoT(Web of Things)-based ones. Especially, Social Web of Things(SWoT) paradigm can make use of cloud storage over Social Network Service(SNS) and enable the possibility of integrated access, management and sharing. This paper proposes an improved SWoT-based real-time monitoring system which makes up for weak points of existing systems, and implements monitoring service integrating a legacy sensor network and commercial SNS without requiring additional servers. Especially, the proposed system can reduce emergency propagation time by employing PUSH messages.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

Online Real-Time Monitoring of Moisture in Pharmaceutical Granules During Fluidized Bed Drying Using Near-Infrared Spectroscopy (근적외분광분석법을 이용한 의약품 건조공정 중 실시간 수분함량 모니터링)

  • Kim, Jaejin;Kim, Byung-Suk;Lim, Young-Il;Woo, Young-Ah
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Drying of granules for tablet formulation is one of the important unit operations. The loss on drying method is traditionally used for this purpose. However, it is a time-consuming method, requiring at least 1 h. Moreover, it is ineffective in monitoring the moisture content of granules during the drying process. In this study, online real-time monitoring of moisture content during the drying process was successfully performed using near-infrared (NIR) spectroscopy. NIR spectra were collected during 15 different drying batches for developing a reliable NIR spectroscopic method. Such a large number of batches were used to develop a more robust partial least squares (PLS) model. NIR spectra collected from 12 batches were used for developing the model that was validated by predicting the moisture content of the samples in the remaining 3 batches. The standard errors of predictions (SEPs) in the measurement of batch 1, batch 2, and batch 3 were 0.52%, 0.57%, and 0.56%, respectively. The online NIR spectroscopic method developed in this study was reliable and accurate in monitoring the moisture content during the drying process.

A Study on the Interface of Injection Molding Parameter for Monitoring and Control (모니터링과 제어를 위한 사출성형 파라미터 인터페이스에 관한 연구)

  • Heo, E.Y.;Moon, D.H.;Park, C.S.;Kim, J.M.;Lee, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.585-590
    • /
    • 2014
  • Recently, monitoring systems, such as POP, take a core role in scheduling or planning of manufacturing facilities for production, maintenance, and so on. Such monitoring systems require functionalities for real-time parameter monitoring and controlling to maximize efficiency of facilities. However, vendors usually do not provide internal communication protocols or interface to access the machine controller. Therefore, the values of parameters related to machine operations and controls cannot be easily accessed from external devices. In this paper, we propose an interface methodology for a real-time monitoring and controlling of injection molding machine parameters such as user input parameters, embedded sensor data and injection molding status information.

Appliance identification algorithm using multiple classifier system (다중 분류 시스템을 이용한 가전기기 식별 알고리즘)

  • Park, Yong-Soon;Chung, Tae-Yun;Park, Sung-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.213-219
    • /
    • 2015
  • Real-time energy monitoring systems is a demand-response system which is reported to be effective in saving energy up to 12%. Real-time energy monitoring system is commonly composed of smart-plugs which sense how much electrical power is consumed and IHD(In-Home Display device) which displays power consumption patterns. Even though the monitoring system is effective, users should themselves match which smart plus is connected to which appliance. In order to make the matching work to be automatic, the monitoring system need to have appliance identification algorithm, and some works have made under the name of NILM(Non-Intrusive Load Monitoring). This paper proposed an algorithm which utilizes multiple classifiers to improve accuracy of appliance identification. The algorithm proposes to understand each classifiers performance, that is, when a classifier make a result how much the result is reliable, and utilize it in choosing the final result among result candidates from many classifiers. By using the proposed algorithm this paper make 4.5% of improved accuracy with respect to using single best classifier, and 2.9% of improved accuracy with respect to other method using multiple classifiers, so called CDM(Commitee Decision Mechanism) method.

Car Sealer Monitoring System Using ICT Technology (ICT 기술을 융합한 자동차 실러도포 공정 모니터링 시스템)

  • Kim, Ho Yeon;Park, Jong Seop;Park, Yo Han;Cho, Jae-Soo
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.53-61
    • /
    • 2018
  • In this paper, we propose a car sealing monitoring system combined with ICT Technology. The automobile sealer is an adhesive used to bond inner and outer panels of doors, hoods and trunks of an automobile body. The proposed car sealer monitoring system is a system that can accurately and automatically inspect the condition of the automobile sealer coating process in the general often factory production line where the lighting change is very severe. The sealer inspection module checks the state of the applied sealer using an area scan camera. The vision inspection algorithm is adaptive to various lighting environments to determine whether the sealer is defective or not. The captured images and test results are configured to send the task results to the task manager in real-time as a smartphone app. Vision inspection algorithms in the plant outdoors are very vulnerable to time-varying external light sources and by configuring a monitoring system based on smart mobile equipment, it is possible to perform production monitoring regardless of time and place. The applicability of this method was verified by applying it to an actual automotive sealer application process.

Structural Health Monitoring of Shanghai Tower Considering Time-dependent Effects

  • Zhang, Qilin;Yang, Bin;Liu, Tao;Li, Han;Lv, Jia
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • This paper presents the structural health monitoring (SHM) of Shanghai Tower. In order to provide useful information for safety evaluation and regular maintenance under construction and in-service condition, a comprehensive structural health monitoring (SHM) system is installed in Shanghai Tower, which is composed of a main monitoring station and eleven substations. Structural responses at different construction stages are measured using this SHM system and presented in this study. Meanwhile, a detailed finite element model (FEM) is created and comparison of results between SHM and FEM is carried out. Results indicate that the time-dependent property of concrete creep is of great importance to structural response and the measured data can be used in FEM updating to obtain more accurate FEM models at different construction stages. Therefore, installation of structural health monitoring system in super-tall buildings could be considered as an effective way to assure structural safety during the construction process.