• Title/Summary/Keyword: monitoring technique

Search Result 2,216, Processing Time 0.029 seconds

An Application of Optoacoustic Technique for the CO Oxidation Reaction Catalyzed by $Gd_{1-x}Sr_xCoO_{3-y}$ (광음향분광법을 이용한 CO 산화반응에서의 $Gd_{1-x}Sr_xCoO_{3-y}$ 촉매효과 연구)

  • Kang Hee-Seok;Oum Ka-Won;Hwang Jin-Soo;Yo Chul-Hyun;Choi Joong-Gill
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 1993
  • An application of the optoacoustic detection method to investigate the catalytic effect of a perovskite, $Gd_{1-x}Sr_xCoO_{3-y}$ (x = 0.00, 0.25, 0.50, 0.75) system, in the oxidation reaction of CO is described. The optoacoustic signals Of $CO_2$ produced from the oxidation reaction were measured for differing x values in $Gd_{1-x}Sr_xCoO_{3-y}$. By monitoring optoacoustic signals with respect to the time, the concentration ratios of CO and $O_2$, and the temperature, the kinetic information on the catalytic properties of the perovskite for CO oxidation reaction can be obtained. The effect of Sr substitution in $Gd_{1-x}Sr_xCoO_{3-y}$ has been found to show the maximum catalytic effect at x = 0.25 and the substantial increase in catalytic activity at temperatures above 200$^{\circ}C$. It demonstrates that the optoacoustic detection method allows the investigation of the integrated catalytic effect not only for the oxidation reaction of CO, but also for many reactions, in general, by continuously and directly detecting the species associated with the reactions.

  • PDF

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Cause Analysis and Development of Root Cause Analysis Map using Data of Chemical Laboratory Accidents (화학실험실 사고 Data를 이용한 근본원인분석 Map 개발 및 원인 분석)

  • Lee, Su-Kyung;Yoon, Yeo-Song;Eom, Seok Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.86-94
    • /
    • 2014
  • To develop a Root Cause Analysis Map which determines the cause of the accident in chemical laboratory, The Root Cause Analysis(RCA) Map for the laboratory areas was sketched from Phase 1 of the accident element to Phase 3 of the accident element, based on the RCA Map which is applied in the petrochemical industry. On the basis of laboratory RCA Map which was classified by using such method. The root causes of the 211 accident cases in laboratories were classified from Phase 4 to Phase 5 by the Cause Factor Charting technique and The cause of the accident data were inputted to EXCEL program. After that, The causes of the accident data were sorted and classified by type and each step. So 'Approximate Primary RCA Map Draft' was written. In addition, it was reaffirmed whether the root causes of 211 accidents of laboratory were appropriate to 'Primary RCA Map Draft'. By complementing the cause which was expected to cause future accidents, the RCA Map for chemical laboratories was developed. Based on 'RCA Map' proposed in this study, the causes of accidents were analysed management systems 35%, monitoring 12.2%, Human Factor Eng. 15.1% and education training 12.1% by the size of the frequency from Phase 1 to Phase 5.

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

A Study on Landscape Management Techniques of Cultural Heritage Designated Area Using 3D Mapping Method (3D맵핑을 이용한 문화재 지정구역 경관관리기법 연구)

  • Kim, Jae-Ung;Lee, Won-Ho;Shin, Hyun-Sil
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.97-108
    • /
    • 2018
  • The purpose of this study is to propose the construction of a visibility analysis model, which is the basis of the analysis for landscape management on the heritage sites such as historic villages and scenic sites. Results of the visibility analysis using DEM and the visibility analysis of DSM based on 3D mapping data are compared as follows: Precision level of the extracted data was confirmed to be less than 6.5cm, based on RTK survey results produced by constructing orthoimage data and DSM from the digital data of 2cm-class GSD(Ground Sample Distance) obtained by using a small UAV(Unmanned Aerial Vehicle). As a result of comparing the visibility analysis data of Digital Surface Model (DSM) using a small UAV with Digital Elevation Model(DEM) applying the height of the building to the Digital Topographic Map, it was confirmed that more realistic visibility analysis can be accomplished by applying DSM, as the structures such as fences, trees, and houses are reflected in the topographic data. The visibility analysis model using the 3D mapping technique can efficiently obtain the constantly changing topographic information when needed, by immediately constructing the data by utilizing a small UAV. It seems to be possible to propose a reasonable analysis result for preservation management such as landscape evaluation of cultural property.

Bioequivalence of Atorva Tablet® to Lipitor Tablet® (Atorvastatin 20 mg) (리피토정® (아토르바스타틴 20 mg)에 대한 아토르바정®의 생물학적동등성)

  • Lim, Hyun-Kyun;Lee, Tae-Ho;Lee, Jae-Hyun;Youm, Jeong-Rok;Song, Jin-Ho;Han, Sang-Beom
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.135-142
    • /
    • 2008
  • The present study describes the evaluation of the bioequivalence of two atorvastatin tablets, Lipitor $Tablet^{(R)}$ (Pfizer, reference drug) and Atorva $Tablet^{(R)}$ (Yuhan, test drug), according to the guidelines of Korea Food and Drug Administration (KFDA). Forty-nine healthy male Korean volunteers received each medicine at the atorvastatin dose of 40 mg in a $2{\times}2$ crossover study with a two weeks washout interval. After drug administration, serial blood samples were collected at a specific time interval from 0-48 hours. The plasma atorvastatin concentrations were monitored by an high performance liquid chromatography -tandem mass spectrometer (LC-MS/MS) employing electrospray ionization technique and operating in multiple reaction monitoring (MRM) and positive ion mode. The total chromatographic run time was 4.5 min and calibration curves were linear over the concentration range of 0.1-100 ng/mL for atorvastatin. The method was validated for selectivity, sensitivity, linearity, accuracy and precision. $AUC_t$ (the area under the plasma concentration-time curve from time zero to 48hr) was calculated by the linear log trapezoidal rule method. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were complied trom the plasma concentration-time data. Analysis of variance was carried out using logarithmically transformed $AUC_t$ and $C_{max}$. No significant sequence effect was found for all of the bioavailability parameters indicating that the crossover design was properly performed. The 90% confidence intervals of the $AUC_t$ ratio and the $C_{max}$ ratio for Atorva $Tablet^{(R)}$ / Lipitor $Tablet^{(R)}$ were ${\log}\;0.9413{\sim}{\log}\;1.0179$ and ${\log}\;0.831{\sim}{\log}\;1.0569$, respectively. These values were within the acceptable bioequivalence intervals of ${\log}\;0.8{\sim}{\log}\;1.25$. Based on these statistical considerations, it was concluded that the test drug, Atorva $Tablet^{(R)}$ was bioequivalent to the reference drug, Lipitor $Tablet^{(R)}$.

ICT based Wireless Power Transmission System Development (ICT 기반의 무선전력전송 시스템 개발)

  • Lee, Jong-Hee;Bang, Junho;Chun, Hyun-Jun;Seo, Beom-Geun;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • Recently, wireless power transmission has attracted much interest and is the subject of much research in industry and academia. As its name implies, it is a technology which involves transferring power without wires. This paper presents the design of an ICT-based wireless power transmission system. The proposed system consists of a wireless transceiver unit and high-efficiency coil unit, which can increase both the transmission efficiency and the effective power distance. In particular, the wireless transceiver unit was designed to work with the ICT technique to enable real-time remote monitoring. Also, studies were done relating to the effect of reducing the standby power. The optimal frequency of IGBT devices used in industrial wireless power systems of 20[KHz] was utilized. The values of $23.9[{\mu}H]$ and $2.64[{\mu}F]$ were selected for L and C, respectively, through many field experiments designed to optimize the system design. In addition, an output current controlling algorithm was developed for the purpose of reducing the standby power. The results presented in this paper represent a 75[%] to 85[%] higher power transmission efficiency with a 10[%] increase in the effective power transmission distance compared with the existing systems. As a result, the proposed system exhibits a lower standby power and maintenance costs. Also, the designed wireless transceiver unit facilitates fault detection by means of user acquired data with the development of the ICT applied program.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 무선 센서네트워크 환경구축을 위한 무선 스펙트럼 분석 및 전송시험에 관한 연구)

  • An, Tea-Ki;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3220-3226
    • /
    • 2011
  • In order to monitor internal risk factors such as fire, terror, etc. on the subway station, the surveillance systems using CCTV and various kinds of sensors have been implemented and recently, introduction of surveillance systems using an advanced IT technology, sensor network technology is tried on several areas. Since 2007, Korean government has made an effort to develop the intelligent surveillance and monitoring system, which can monitor fire, intrusion, passenger congestion, health-state of structure, etc., by using wireless sensor network technology and intelligent video analytic technique. For that purpose, this study carried out field wireless communication environment test on Chungmuro Station of Seoul Metro on the basis of ZigBee that is considered as a representative wireless sensor network before field application of the intelligent integrated surveillance system being developed, arranged and analyzed and ZigBee based wireless communication environment test results on the platform and waiting room of Chungmuro Station on this paper. Results of wireless spectrum analysis on the platform and waiting room showed that there is no radio frequency overlapped with that of ZigBee based sensor network and no frequency interference with adjacent frequencies separated 10MHz or more. As results of wireless data transmission test using ZigBee showed that data transmission is influenced by multi-path fading effect from the number and flow rate of passengers on the platform or the waiting room rather than effects from entrance and exit of the train to/from the platform, it should be considered when implementing the intelligent integrated surveillance system on the station.

Effects of Sahyangsohap-won on Cerebral Hemodynamics in Healthy Subjects (사향소합원(麝香蘇合元)이 정상인의 뇌혈류역학에 미치는 영향)

  • Koo, Bon-Soo;Kim, Sung-Hwan;Moon, Sang-Kwan;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Lee, Kyung-Sup;Ryu, Soon-Hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.199-205
    • /
    • 2001
  • Background and Purpose : Transcranial doppler ultrasonography(TCD) is a noninvasive and nonradioactive technique for evaluation of the hemodynamics in large cerebral vessels. Sahyangsohap-won(SS) has been considered to be effective for the treatment of various disease, especially cerebrovascular, cardiovascular, and psychosomatoform disorders. But, there is no study about the effect of SS on the cerebral hemodynamics in humans. The aim of this study was to assess the effect of SS on the changes in cerebral hemodynamics and the dose-dependant effect by using TCD. Subjects and Methods : 30 healthy subjects were randomly divided into three group: group 1 took no drug, group 2 took SS one pill, and group 3 took SS 2 pills. Changes in the mean blood flow velocity(MBFV) and pulsatility index(PI) in the middle cerebral artery were evaluated by means of TCD. We obtained hypercapnia with breath-holding and evaluated cerebrovascular reactivity with the breath-holding index(BHI). Systolic blood pressure(SBP), diastolic blood pressure(DBP), and heart rate(HR) were measured by means of ambulatory blood pressure monitoring. In group 2 and group 3, the evaluations were performed during the baseline and were repeated at 20, 40, and 60 minutes after SS administration. In group 1, the evaluation was performed at corresponding time intervals. Results : In mean values of MSFV, PI, SSP, DBP, and HR, no stastically significant differences were found between the 3 groups. However, BHI values were significantly lower in groups 2 and 3 than in group 1 at 40 minutes after SS administration(P<0.05, group 1 vs group 2, group 1 vs group 3 by post-hoc analysis: Scheffe's test) but in dose-dependant effect, there was no difference between group 2 and group 3. Conclusion : These results suggest that SS can decrease vascular resistance in cerebral small arteries or arterioles and enhance their distensibility. Further studies on larger numbers of subjects are needed to confirm these effects and the dose-dependant effects.

  • PDF

A Study on the Control System of Maximum Demand Power Using Neural Network and Fuzzy Logic (신경망과 퍼지논리를 이용한 최대수요전력 제어시스템에 관한연구)

  • 조성원
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.420-425
    • /
    • 1999
  • The maximum demand controller is an electrical equipment installed at the consumer side of power system for monitoring the electrical energy consumed during every integrating period and preventing the target maximum demand (MD) being exceeded by disconnecting sheddable loads. By avoiding the peak loads and spreading the energy requirement the controller contributes to maximizing the utility factor of the generator systems. It results in not only saving the energy but also reducing the budget for constructing the natural base facilities by keeping thc number of generating plants ~ninimumT. he conventional MD controllers often bring about the large number of control actions during the every inteyating period and/or undesirable loaddisconnecting operations during the beginning stage of the integrating period. These make the users aviod the MD controllers. In this paper. fuzzy control technique is used to get around the disadvantages of the conventional MD control system. The proposed MD controller consists of the predictor module and the fuzzy MD control module. The proposed forecasting method uses the SOFM neural network model, differently from time series analysis, and thus it has inherent advantages of neural network such as parallel processing, generalization and robustness. The MD fuzzy controller determines the sensitivity of control action based on the time closed to the end of the integrating period and the urgency of the load interrupting action along the predicted demand reaching the target. The experimental results show that the proposed method has more accurate forecastinglcontrol performance than the previous methods.

  • PDF