• Title/Summary/Keyword: monitoring measurement system

Search Result 1,539, Processing Time 0.026 seconds

Wide-area Frequency-based Tripped Generator Locating Method for Interconnected Power Systems

  • Kook, Kyung-Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.776-785
    • /
    • 2011
  • Since the Internet-based real-time Global Positioning System(GPS) synchronized widearea power system frequency monitoring network (FNET) was proposed in 2001, it has been monitoring the power system frequency in interconnected United States power systems and numerous interesting behaviors have been observed, including frequency excursion propagation. We address the consistency of a frequency excursion detection order of frequency disturbance recorders in FNET in relation to the same generation trip, as well as the ability to recreate by power systems dynamic simulation. We also propose a new method, as an application of FNET measurement, to locate a tripped generator using power systems dynamic simulation and wide-area frequency measurement. The simulation database of all the possible trips of generators in the interconnected power systems is created using the off-line power systems dynamic simulation. When FNET detects a sudden drop in the monitoring frequency, which is most likely due to a generation trip in power systems, the proposed algorithm locates a tripped generator by finding the best matching case of the measured frequency excursion in the simulation database in terms of the frequency drop detection order and the time of monitoring points.

Plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection ($CO_2$ 주입 암석물성 측정 장치 구축 방안)

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Bang, Eun-Seok;Keehm, Young-Seuk;Synn, Joong-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.303-306
    • /
    • 2007
  • After Kyoto protocol took effect, many countries are making efforts to reduce $CO_2$ one of effective which is geosequestration. But a percentage of geosequestration in total research budget is very small and the priority order of research also is receded in Korea. As one of efforts to activate the research on geosequestration in field of geophysics, we proposed the plan to build up a measurement system for rock physical properties monitoring during $CO_2$ injection which will function as original technology. The system consists of two part, one of which is a data acquisition system based on seismic and complex resistivity tomographic measurement and the other of which is a tri-axial compressive system to realize the in-situ condition. And also developments of various inversion algorithms are proposed to interpret data qualitatively such as a inversion algorithm for confined cylindrical boundary, a joint inversion algorithm and a 4-D inversion algorithm.

  • PDF

Experimental Study on Temperature-Moisture Combined Measurement System for Slope Failure Monitoring (사면붕괴 모니터링에 사용되는 온도-함수비 복합계측시스템 개발에 관한 실험적 연구)

  • Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • Recently, the event of slope failure has been occurring frequently due to rapid climate changes and broad development of infrastructures, and the research for establishment of monitoring and prevention system has been an attentive issue. The major influence factors of slope failure mechanism can be considered moisture and temperature in soil, and the slope failure can be monitored and predicted through the trend of moisture-temperature change. Therefore, the combined sensing technology for the continuous measurement of moisture-temperature with different soil depths is needed for the slope monitoring system. The various independent sensors for each item (i.e. temperature and moisture respectively) have been developed, however, the research for development of combined sensing system has been hardly carried out. In this study, the high-fidelity sensor combing temperature-moisture measurement by using the minimized current consuming temperature circuit and the microwave emission moisture sensor is developed and applied on the slope failure monitoring system. The feasibility of developed monitoring system is verified by various experimental approaches such as standard performance test, mockup test and long-term field test. As a result, the developed temperature-moisture combined measurement system is verified to be measuring and monitoring the temperature and moisture in soil accurately.

Stability Evaluation of In-Line Measurement System with Repeated Measurements (반복 측정이 가능한 인라인 측정시스템의 안정성 평가)

  • Joung, Sooho;Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.36-43
    • /
    • 2004
  • In-line measurement systems are preferred to those in analytical laboratories, since in-line systems provide rapid response to process upsets. If an in-line measurement system exhibits an unstable variation and if this instability in measurement variation goes undetected, it will make the process monitoring procedure invalid. This paper presents a stability evaluation procedure for the in-line measurement system using two independent readings from the in-line measurement system and one reading from the analytical laboratory, which requires less measurement cost and time.

A Study on the Correlation of Condition Monitoring Parameters of Functional Machine Failures. (기계시스템 파손에 따른 상태진단 파라미터의 상관관계 해석에 관한 연구)

  • 장래혁;강기홍;공호성;최동훈
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.285-290
    • /
    • 2002
  • Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.

A Study on the Correlation of Condition Monitoring Parameters of Functional Machine Failures. (기계시스템 파손에 따른 상태진단 파라미터의 상관관계 해석에 관한 연구)

  • 장래혁;강기홍;공호성;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.252-259
    • /
    • 2001
  • Integrated condition monitoring is required to monitor effectively the machine conditions since machine failures could not be monitored accurately by any single measurement parameter. Application of various condition monitoring techniques is therefore preferred in many cases in order to diagnosis the machine condition. However it inevitably requires lots of maintenance cost and sometimes it could be proved to over-maintenance unnecessarily. This could happen especially when one measurement parameter closely correlates to another. Therefore correlation analysis of various monitoring parameters has to be performed to improve the reliability of diagnosis. In this work, Pearson correlation coefficient was used to analyze the correlation between condition monitoring parameters of an over-loaded machine system where the vibration, wear and temperature were monitored simultaneously. The result showed that Pearson correlation coefficient could be regarded as a good measure for evaluating the availability of condition monitoring technology.

  • PDF

Real Time Temperature Monitoring System Using Optic Fiber Sensor (광섬유 센서를 이용한 실시간 온도 감시 시스템)

  • Lee, Chang-Kun;Kim, Young-Su;Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.209-216
    • /
    • 2010
  • Optical Temperature Distribution Sensor Measurement System uses fiber optic sensors itself for temperature measurement is a system which can be measured the Installed surrounding entire temperature as a thousand points by laying a single strand of fiber optic. If there are a lot of measuring points in the distribution Measurement, the cost of each measuring point can be reduced the cost level of existing sensors and at the same time this has the advantage of connecting all sensors as one or two strands of fiber. Generally Optical Fiber is used for communication but Optical Fiber itself can be used for sensor and it has the characteristic of sensor function which can be measured Temperature in the at least each one meter distance. By using these characteristics each sensor and the number of Connection Lines can be reduced. In this paper, we implement a real time temperature monitoring system, which is easy to manage and control for data storage, data management, data storage using a computer and which has the functions of monitoring and correction according to Real-time temperature changes using historical temperature data.

A Study of Sensing Locations for Self-fitness Clothing base on EMG Measurement (셀프 피트니스 의류 개발을 위한 근전도 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sangwoo
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.755-765
    • /
    • 2016
  • Recently, interest in monitoring health and sports is growing because of the emphasis on wellness, which is accelerating the development and commercialization of smart clothing for biosignal monitoring. In addition to exerciseeffect monitoring clothing that tracks heart rate and respiration, recently developed clothing makes it possible to monitor muscle balance using electromyogram (EMG). The electrode for EMG have to attached to an accurate location in order to obtain high-quality signals in surface EMG measurement. Therefore, this study develops monitoring clothing suitable for different types of human bodies and aims to extract suitable range of EMG according to movements in order to develop self-fitness monitoring clothing based on EMG measurement. This study identified and attached electrodes on six upper muscles and two lower muscles of ten males in their 20s. After selecting six main motions that create a load on muscles, the 8-ch wireless EMG system was used to measure amplitude value, noise, SNR and SNR (dB) in each part and statistical analysis was conducted using SPSS 20.0. As a result, the suitable range for EMG measurement to apply to clothing was identified as four parts in musculus pectoralis major; three parts in muscle rectus abdominis, two parts each in shoulder muscles, backbone erector, biceps brachii, triceps brachii, and musculus biceps femoris; and four part in quadriceps muscle of thigh. This was depicted diagrammatically on clothing, and the EMG-monitoring sensing locations were presented for development of self-fitness monitoring.

Design of a Monitoring System for a GPS/INS Integration System (GPS/INS항법 시스템용 모니터링 시스템의 설계)

  • Lee, See-Ho;Hwang, Dong-Hwan;Moon, Sung-Wook;Kim, Se-Hwan;Lee, Sang-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.948-950
    • /
    • 1999
  • In this paper, a monitoring system is desigend for a GPS/INS integration system. The function of the monitoring system is to acquire real-time data from system and displayed them. The monitoring system supervises the operation of navigation system. Visual C++ was used in the implementation. The performance of the monitoring system was verified through a real-time test for a GPS/INS Integration system which is composed of a GPS Receiver. IMU(Inertial Measurement Unit), NCU (Navigation Computer Unit)

  • PDF

Displacement Analysis of Enormous Structure using RTK GPS (RTK GPS를 이용한 거대구조물 변위 분석)

  • 박운용;홍순헌;차성렬;김정동
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.97-101
    • /
    • 2003
  • Among GPS methods, first of all, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when we measured the behavior of main tower of a suspension bridge by using RTK GPS method and IMU, which was an inertia navigation system. Comparing a deviation between observation value using IMU and RTK GPS, X axis was 1mm, Y axis 1mm and Z axis 2.21mm. It turned out that it was possible to monitor and measure structures by using RTK GPS method. Besides, in order to manage the structures and prevent their disaster, the transformed monitoring, which used dynamic RTK GPS measurement method, was applied in real time. It was verified that it could be used as transformed monitoring measurement method for massive structures.

  • PDF