• 제목/요약/키워드: monitoring measurement

검색결과 2,748건 처리시간 0.029초

지진모니터링과 예측을 위한 지하수관측소내 라돈 측정시스템 개발 기초연구 (Basic study on development of the radon measurement system in groundwater stations for the seismic monitoring and prediction)

  • 장석환;이재경;이상윤;오경두
    • 한국수자원학회논문집
    • /
    • 제53권7호
    • /
    • pp.507-519
    • /
    • 2020
  • 본 연구에서는 지각운동 모니터링과 지진발생 및 예측에 활용가능한 라돈 측정시스템을 개발하였으며, 라돈 측정시스템의 시범운영 결과와 지진발생 사례를 분석하였다. 첫 번째로, 개발된 라돈 측정시스템은 NB-IoT 라돈 측정기기, 데이터센터, 자료분석 및 자료제공 서버로 구성되며, NB-IoT를 활용하므로 측정된 자료의 원격전송이 가능하기 때문에 이 시스템은 무인 지하수관측소에 설치 및 운영에 매우 적합하다. 두 번째로 개발된 라돈 측정기기를 김포지역 지하수관측소에서 2019년 5월부터 7월까지 시범운영하였다. 측정된 라돈값을 지하수위와 전기전도도 측정자료와 비교하였으며, 본 연구에서 개발한 라돈 측정기기가 상용화하는데 어느 정도 가능성이 있음을 확인하였다. 마지막으로 2019년 11월부터 2020년 2월까지 3개 지진발생 사례와 Test-bed인 포항지역 지하수관측소에 설치된 NB-IoT 라돈 측정기기의 일단위 라돈 측정값, 일단위 지하수위, 일단위 전기전도도의 변동성을 비교·분석하였다. 분석결과, 지진발생이 라돈, 지하수위, 전기전도도와 어느 정도 상관관계가 있음을 확인하였으며, 본 측정자료가 향후 지진모니터링 및 예측에 도움이 되는 기초자료 제공이 가능함을 확인하였다

Application of a Gas Chromatography/Luminol Detection System for Peroxyacetyl Nitrate Airborne Measurement

  • Khang, Bumju;Ahn, Joon Young;Song, Dasol;Lee, Gangwoong
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권2호
    • /
    • pp.105-113
    • /
    • 2013
  • We constructed and tested an airborne peroxyacetyl nitrate (PAN) monitoring system based on luminol chemiluminescence detection with fast gas chromatography. This system allowed for simultaneous measurement of PAN and nitrogen dioxide ($NO_2$) with a time resolution of <2 min. Actual sample masses within the fixed volume sample loop at various altitudes and temperatures were adjusted to standard atmosphere, using measured pressures and temperatures. The airborne PAN measurement system was evaluated during two field studies above the southern Korean Peninsula in August and October 2009. The detection limit based on the ISO approach was 0.035 ppbv PAN, well below the observed concentrations of 0.185-1.49 ppbv during these studies. Under these conditions, the PAN mixing ratios were positively correlated with $O_x$ ($O_x=O_3+NO_2$), with slopes varying between 0.014 and 0.033 and intercepts between 22.6 and 55.1 ppbv $O_x$. The intercepts corresponded roughly to background $O_x$ mixing ratios in central Europe; however, the slopes were above the range of slopes reported in other studies. We also enhanced the durability, safety, and ease of maintenance of the PAN monitoring system by redesigning the structure of the conventional luminol cell.

유비쿼터스 센서 네트워크를 이용한 자동 수목 활력도 측정 시스템 개발 (Developing the Automatic Measurement System of Tree's Vigor based on Ubiquitous Sensor Network)

  • 심규원;전문장;김중규
    • 한국산업정보학회논문지
    • /
    • 제12권1호
    • /
    • pp.61-71
    • /
    • 2007
  • 본 연구는 현재 인력기반 중심의 측정장비인 사이고미터가 가지고 있는 제약성을 개선할 목적으로 유비쿼터스 센서 네트워크를 이용하여 수목의 수세활력도를 측정할 수 있는 자동화 시스템을 개발하였다. 본 연구를 통하여 개발된 시스템의 신뢰성을 검증하기 위하여 사이고미터와 측정값을 비교한 결과 거의 차이가 없었으며, 배터리 수명은 약 1,844일 정도 유지되는 것으로 나타났다. 그리고 센서 네트워크 안정성 검증 결과 데이터 전송이 가능한 최대 거리는 130m로 나타나 산림지역이나 가로수 관리에 적용할 경우 조사 및 관리비용의 절감과 노동생산성을 향상 시킬 수 있을 것으로 사료된다.

  • PDF

연삭 가공면의 표면조도와 형상정밀도의 비접촉식 인프로세스 측정기술 (An In-Process Measurement Technique for Non-contact Monitoring of Surface Roughness and form Accuracy of Ground Surfaces)

  • 임동열
    • 한국정밀공학회지
    • /
    • 제4권2호
    • /
    • pp.36-46
    • /
    • 1987
  • An optical technique using laser for non-contact measurement of surface roughness and form accuracy of ground surfaces is presented. It is found that, when a ground surface is illuminated by a beam of laser light, the roughness height and slope distribution has significant influence on the pattern of reflection and it maintains an unique Gaussian distribution relationship with the surface roughness. The principle idea of the optical measurement system is therefore monitor the radiation, and then calibrate it in process against surface roughness by means of necessary digital data processing. On the other hand, measuring the form accuracy of a ground surface is accomplished by using a triangular method, which is based on observing the movement of an image of a spot of light projected onto the surface. The image is focused, through a series of lenses for magnification, on a photodetector array lf line configur- ation. Then the relative movement of image and consequently the form accuracy of the surface can be obtained through appropriate calibration procedures. Experimental test showed that the optical roughness measurement technique suggested in this work is very efficient for most industrial applications being capable of monitoring the roughness heights ranging 0.1 to 0.6 .$\mu$m CLA values. And form accuracy can be measured in process with a resolution of 10 .$\mu$m.

  • PDF

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Project Performance Evaluation and Workload Monitoring Technique by Using Input/Output Bipolar Diagram

  • Lee, Jung-Gyu;Jeong, Seung-Ryul
    • 인터넷정보학회논문지
    • /
    • 제18권4호
    • /
    • pp.79-87
    • /
    • 2017
  • Company A, an embedded system manufacturer, provides its products to Company P which is the parent company of Company A. Both companies learned that they needed to find over 4,000 bugs before market release in order to meet the acceptable quality level. Traditionally, they had utilized time-series line graphs as their common performance measurement tool. These graphs compared accumulated numbers of bugs fixed with accumulated numbers of bugs found. Engineers in Company A had been under pressure to improve the process capacity because the line for bugs fixed was always below than the line for bugs found. By using a newly designed Bipolar diagram, engineers in Company A analyzed the process performance. And they were in a position to be more flexible for internal or inter-companies meeting. Authors explain an empirical study of a graphical and practical performance measurement tools relating to mainly the Bipolar diagram. As a result, the Bipolar diagram provides workload monitoring and performance measurement functions in a given timeframe by using the concepts of Optimum Process Line (or band) and Fair Process Capacity Zone.

풍력발전기 주축 및 날개 부하 측정시스템의 보정 및 불확실성 해석 (A Calibration and Uncertainty Analysis on the Load Monitoring System for a Low Speed Shaft and Rotor Blade of a Wind Turbine)

  • 박무열;유능수;남윤수
    • 대한기계학회논문집A
    • /
    • 제30권5호
    • /
    • pp.560-567
    • /
    • 2006
  • The exact load measurements for the mechanical parts of a wind turbine are important step both fur the evaluation of a specific wind turbine design and for a certification process. A common method for a mechanical load measurement is using a strain gauge sensing. Two main problems ought to be answered in order for this method to be applied to the wind turbine project. These are strain gauge calibration and non-contact signal transmission from the strain gauge output to a load monitoring system. This paper suggests reliable solutions fer these two problems. A Bluetooth, a short range wireless data communication technology, is used to solve the second problem. The first one, the strain gauge calibration methodology for a load measurement in a wind turbine application, is fully explained in this paper. Various mechanical loadings for a strain gauge calibration in a wind turbine load measurement are introduced and analyzed. Initial experimental results which are obtained from a 1 kW small size wind turbine are analyzed, and the uncertainty problem in estimating mechanical loads using a calibration matrix is fully covered in this paper.

The Experience in Dose Measurement of IVR with Glass Dosimeter System

  • Nishizawa, Kanae;Moritake, Takashi;Iwai, Kazuo;Matsumaru, Yuji;Tsuboi, Koji;Maruyama, Takashi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.269-271
    • /
    • 2002
  • It is reported that exposure for the patient and the medical staff from IVR is large. Direct measurement of patient exposure is difficult, since the measurement disturbs reading of images. The fluorescence glass-dosimeter system consisting of small-size glass chips is developed in recent years. Owing to its small size and physical characteristics, direct monitoring of surface dose may be feasible. The dose measurement for patient and medical staff during head interventional radiology (IVR) examinations was tried by using the fluorescence glass-dosimeter system. A dose response of the glass dosimeter is almost linear in large dose range but its energy dependency is high. About 20% variation of sensitivity was observed in the effective energy of 45-60keV which was used in IVR. In spite of this shortcoming, the fluorescence glass-dosimeter system is a convenient means for a dose monitoring during IVR performance.

  • PDF

분극저항에 의한 온라인 부식속도 측정 시스템에 관한 연구 (Study on an On-line Measurement System of Corrosion Rate by Linear Polarization Resistance)

  • 문전수;이재근;이재봉;박필양
    • Corrosion Science and Technology
    • /
    • 제11권4호
    • /
    • pp.135-140
    • /
    • 2012
  • The linear polarization resistance method is one of the widely used techniques for the corrosion rate monitoring in the water circulating systems of plants. The measurement is simple and rapid, so that a continuous on-line monitoring is possible without any shutdown of plants. A 2-electrode polarization corrosion rate measurement system was installed in a laboratory using a data acquisition board and PC. The signal processing parameters were optimized for the accurate corrosion rate measurement, and the polarization resistance was compensated with the solution resistance measured by the high frequency sine wave signal of an output channel. The precision of corrosion rate data was greatly improved by removing the initial noise signals on measuring the polarization resistance.

칼만 필터를 이용한 구조 안전성 모니터링에 관한 기초 연구 (A Basic Study on Structural Health Monitoring using the Kalman Filter)

  • 박명진;김유일
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.175-181
    • /
    • 2020
  • For the success of a structural integrity management, it is essential to acquire structural response data at some critical locations with limited number of sensors. In this study, the structural response of numerical model was estimated by data fusion approach based on the Kalman filter known as stochastic recursive filter. Firstly, transient direct analysis was conducted to calculate the acceleration and strain of the numerical standing beam model, then the noise signals were mixed to generate the numerical measurement signals. The acceleration measurement signal was provided to the Kalman filter as an information on the external load, and the displacement measurement, which was transformed from the strain measurement by using strain-displacement conversion relationship, was provided into the Kalman filter as an observation information. Finally, the Kalman filter estimated the displacement by combining both displacements calculated from each numerically measured signal, then the estimated results were compared with the results of the transient direct analysis.