• Title/Summary/Keyword: monitoring Agent

Search Result 302, Processing Time 0.027 seconds

Occurrence and Epidemics of Bacterial Canker of Kiwifruit in Korea

  • Kim, Gyoung Hee;Jung, Jae Sung;Koh, Young Jin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Bacterial canker is the largest limiting factor in the cultivation and production of kiwifruit worldwide. Typical symptoms comprise necrotic spots on leaves, canker and dieback on canes and trunks, twig wilting, and blossom necrosis. Pseudomonas syringae pv. actinidiae (Psa), which is the causal agent of kiwifruit bacterial canker, is divided into four biovars based on multilocus sequence analysis of different genes, additional PCR testing of pathogenic genes (argKtox cluster, cfl, and various effector genes), and biochemical and physiological characterization. Bacterial canker caused by Psa biovar 2 designated Psa2 was detected for the first time on the green-fleshed kiwifruit cultivar Hayward in 1988 and the yellow-fleshed kiwifruit cultivar Hort16A in 2006 in Korea. Psa biovar 3 designated Psa3, responsible for the current global pandemics of kiwifruit bacterial canker, began to appear in Korea in 2011 and caused tremendous economic losses by destroying many vines or orchards of yellow-fleshed kiwifruit cultivars in one or several growing seasons. Bacterial canker epidemics caused by both Psa2 and Psa3 are prevalent in Korea in recent years. In this review, we summarize the symptomatology, etiology, disease cycle, diagnosis, and epidemiology of kiwifruit bacterial canker in Korea.

Markable Green Synthesis of Gold Nanoparticles Used As Efficacious Catalyst for the Reduction of 4-Nitrophenol

  • Rokade, Ashish A.;Yoo, Seong Il;Jin, Youngeup;Park, Seong Soo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.251-256
    • /
    • 2020
  • The biocompatibility and plasmonic properties of Au nanoparticles make them useful for photothermal therapy, drug delivery, imaging, and many other fields. This study demonstrated a novel, facile, economic, and green synthetic method to produce gold nanoparticles. Gold nanoparticles (AuNPs) with spherical and triangular shapes were effectively synthesized using only Schisandra chenesis fruit extract as the capping and reducing agent. The shape of the AuNPs could be engineered simply by adjusting the molar concentration of HAuCl4 in the reaction mixture. The as-synthesized AuNPs were characterized using UV-VIS spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and energy dispersive X-ray analysis (EDXA). This study revealed that by using the HAuCl4 concentration in the AuNP synthesis, the shape and size of the AuNPs could be controlled by the concentration of HAuCl4 and Schisandra chinensis fruit extract as a surfactant. The as-synthesized AuNPs samples had sufficient colloidal stability without noticeable aggregation and showed the predominant growth of the (111) plane of face-centered cubic gold during the crystal growth. The catalytic efficiency of the AuNPs synthesized using Schisandra chenesis fruit extract was examined by monitoring the catalytic reduction of 4-nitrophenol to 4-aminophenol using Ultraviolet-visible spectroscopy (UV-Vis spectroscopy). The synthesized AuNPs showed good catalytic activity to reduce 4-nitrophenol to 4-aminophenol, revealing their practical usefulness.

Concise Clinical Review of Hematologic Toxicity of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis: Role of Mitochondria

  • Oehadian, Amaylia;Santoso, Prayudi;Menzies, Dick;Ruslami, Rovina
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.111-121
    • /
    • 2022
  • Multidrug-resistant tuberculosis (MDR-TB) is caused by an organism that is resistant to both rifampicin and isoniazid. Extensively drug-resistant TB, a rare type of MDR-TB, is caused by an organism that is resistant to quinolone and one of group A TB drugs (i.e., linezolid and bedaquiline). In 2018, the World Health Organization revised the groupings of TB medicines and reclassified linezolid as a group A drug for the treatment of MDR-TB. Linezolid is a synthetic antimicrobial agent in the oxazolidinone class. Although linezolid has a good efficacy, it can cause substantial adverse events, especially hematologic toxicity. In both TB infection and linezolid mechanism of action, mitochondrial dysfunction plays an important role. In this concise review, characteristics of linezolid as an anti-TB drug are summarized, including its efficacy, pathogenesis of hematologic toxicity highlighting mitochondrial dysfunction, and the monitoring and management of hematologic toxicity.

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

A case of chronic licorice intoxication-induced apparent mineralocorticoid excess syndrome (만성 감초 중독으로 유발된 미네랄코르티코이드 과잉증후군 1예)

  • Young Jae Lim;Ji Eun Kim
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.21 no.2
    • /
    • pp.151-155
    • /
    • 2023
  • Licorice is a perennial herb belonging to the legume family that mainly grows in northeastern China, Mongolia, Siberia, and other regions. It is used in traditional medicine in the form of dried roots in the East and the West. The main active component of licorice, glycyrrhizin, is known to produce mineralocorticoid effects when consumed chronically, which can lead to apparent mineralocorticoid excess syndrome. Herein, we present the case of a 72-year-old woman who was admitted to the emergency room with severe generalized weakness and difficulty keeping her neck upright, which had developed after daily consumption of licorice-infused water for the past 2 months. Blood tests revealed metabolic alkalosis and severe hypokalemia, and an electrocardiogram showed ventricular bigeminy. The patient was treated with daily potassium and spironolactone supplements, leading to a significant improvement in muscle strength after a week. One week later, the patient was discharged, showing rare ventricular premature contractions on electrocardiography, but with no specific complaints. Chronic licorice ingestion leading to hypokalemia and muscle weakness can be life-threatening, necessitating the discontinuation of the causative agent, close monitoring, and cautious supplementation of potassium and spironolactone as treatment.

Patterns of Mercury Concentrations in Blood and Urine After High Mercury Exposure (고농도 수은 노출자의 혈 중 및 뇨 중 수은 농도 변화에 관한 연구)

  • 윤충식;임상혁;하권철
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.71-80
    • /
    • 2001
  • Blood and urine mercury level of three workers were monitored during 60~80 days after high exposure to mercury at the silver refining plant. Mercury was used to form silver-mercury amalgam from plating sludge. Workers were exposed to mercury about 70 days at the several processes, such as hand held weaving, vibration table, and heating from the furnace. mercury was analysed by atomic absorption spectroscopy-vapor generation technique. Recovery from the biological sample was 95.51% and pooled standard deviation was 0.033. At the time of study, there was no work at the workplace. So, airborne mercury concentration was measured with area sampling 5 days after the work, ranged from 0.1459 to 1.2351 mg/㎥(Arithmatic mean 0.4711 mg/㎥, Geometric mean 0.3566 mg/㎥) at the inside of the plant, that is far above the ACGIH's TLV(0.025 mg/㎥) and ranged from 0.0073 to 0.0330 mg/㎥ at the outdoor. Blood mercury levels at the beginning of the monitoring were 4~14 times greater than the American Conference of Governmental Industrial Hygienists Biological Exposure Index(ACGIH BEI, 15 ug/L). Blood mercury levels were decreased logarithmically, that is, rapidly at the high level and slowly at the low level but sustained above the level of the ACGIH BEI 60~80 days after the work. Urine mercury levels at the beginning of the monitoring were 8~16 times greater than the ACGIH BEI(35 ug/g creatinine). Urine mercury levels were decreased logarithmically, but correlation between urine level and off-days were lower than those of blood. Decreasing pattern of blood mercury levels were little affected than that of urine levels when the chelating agent, D-penicillamine, was administered. There was correlation between blood mercury level and urine mercury level(0.81~0.83) but it didn\`t mean that the highest blood mercury level corresponded the highest urine mercury level. In our study, Case 1 always shows the highest level in urine but case 3 always shows the highest level in blood. Creatinine correction represented better correlations between urine mercury levels and blood levels, and between urine levels and off-days rather than by urine volume. Spot urine sampling had a wide variation than that of whole day urine sampling. So, We recommend spot urine sampling for screening and whole day urine sampling for exact diagnosis.

  • PDF

Study on the Emission Characteristics of Air Pollutants from Agricultural Area (농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구)

  • Kim, Min-Wook;Kim, Jin-Ho;Kim, Kyeong-Sik;Hong, Sung-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

A Study on Monitoring and Management of Invasive Alien Species Applied by Citizen Science in the Wetland Protected Areas(Inland Wetland) (시민과학을 활용한 습지보호지역의 생태계교란 식물 모니터링 및 관리방안 연구)

  • Inae Yeo;Kwangjin Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.305-317
    • /
    • 2023
  • This study suggested a citizen science based model to enhance the efficacy of the managing invasive alien plants and examined whose applicability in 3 Wetland Protected Areas (Jangrok of Gwangju metropolitan city, Madongho of Goseong in South Gyeongsang Province, and Ungok of Gochang in North Jeolla Province). The process consists of (a) collecting citizen scientist including local residents of 3 protected areas and piling up information on the 4 species of invasive alien plants (Sicyos angulatus L., Solanum carolinense L., Ambrosia artemisiifolia L. and Solidago altissima L) in a information platform Ecological Information Bank (EcoBank) from September 18th to October 31th, (b) constructing distribution map containing the location and density (3 phases: individual-population-community) of target plants, (c) providing distribution map to Environment Agency and local government who is principal agent of managing invasive alien plants in 3 protected areas, and from whom (d) surveying applications of the distribution map and opinion for future supplement. As a result, citizen science based monitoring should be continued to complement the nationwide information for the field management of invasive alien plants with the expansion of target species (total 17 plants species that Ministry of Environment in South Korea designated) and period of monitoring in a year to increase the usability of surveyed information from citizen science. In the long run, effectiveness of the management of invasive alien species applied by citizen science should be reviewed including efficacy of field management process from citizen's participating in elimination project of invasive alien plants and time series distribution followed by the management of the species.

Monitoring Technique of Pumpkin Fruit Flies Using Terpinyl Acetate-Protein Diet Lure and Development of Its Spraying Formulation for The Fly Control (Terpinyl acetate-단백질먹이 유인제를 이용한 호박과실파리류 연중발생 모니터링 기술 및 살포용 방제 제형 개발)

  • Kim, Yonggyun;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.59 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Two tephritid fruit flies are infesting pumpkins in Korea. Both are classified into genus of Zeugodacus. The striped fruit fly, Z. scutellata, males are attracted to a lure called Cuelure (CL), which has been used to monitor the occurrence of this fruit fly in the crop field. In contrast, no effective male lure was not developed to monitor the pumpkin fruit fly, Z. depressa. Protein diet lure has been used to attract females of most fruit flies. The addition of terpinyl acetate (TA) was effective to increase the attractiveness of Z. depressa. This study aimed to monitor the occurrence of Z. depressa in pumpkin field with TA-protein diet lure. To validate the efficiency of TA-protein diet lure, Z. scutellata was monitored in a year of 2019 using CL and TA-protein diet lures, and the yearly monitoring data were compared. The occurrence patterns derived from both lures were similar except late season after October. The extended catches of TA-protein diet lure might be explained by the adult diapause induction of Z. scutellata at late September. Monitoring Z. depressa with TA-protein diet lure gave two peaks at mid July and August-September, in which more than 80% catches were females. Based on the attractiveness of TA-protein diet lure, its wettable powder with an addition of spinosad insecticide was formulated and sprayed to pumpkin crops. After 7 days post-spray, the control efficacy recorded more than 70%. However, the control efficacies decreased as the time progressed after the spray. These results demonstrated the application of TA-protein diet lure for monitoring occurrence of Z. depressa in pumpkin-cultivating field conditions. The wettable powder containing spinosad can be applied to develop a new control agent against two pumpkin fruit flies.

Preparation of $^{125}I-Iodotyraminehemisuccinyltaxol\;(^{125}ITHT)$ for Competitive Taxol Radioimmunoassay (Taxol 방사면역측정을 위한 $^{125}I-Iodotyraminehemisuccinyltaxol\;(^{125}ITHT)$의 제조)

  • Lee, Tae-Sup;Awh, Ok-Doo;Choi, Tae-Hyun;Kim, Hyun-Suk;Hong, Jun-Pyo;Lee, Eun-Sook;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.121-132
    • /
    • 2002
  • Purpose : Taxol(Paclitaxel), an antineoplastic agent, has been used in the treatment of ovarian and breast cancers. The determination of optimal Taxol concentrations in human serum was required for enhancing therapeutic effect and maintaining the appropriate Taxol level in blood. This study was aimed to synthesizeradiolabeled Taxol derivatives as radiotracer in competitive radioimmunoassay for monitoring Taxol concentrations in blood and to determine the usefulness of its derivatives. Materials and Methods : Hemisucdcinyltaxol(HT) was synthesized by esterification of Taxol with succinic anhydride. Tyraminehemisuccinyltaxol(THT) was synthesized by coupling of HT with tyramine using isobutylchlormate as coupling agent and purified by HPLC. By using chloramine-T($5.25mg/ml,\;10{\mu}{\ell}$) as oxidant agent, THT($4mg/ml,\;30{\mu}{\ell}$) was labeled wity $^{125}I\;(37MBq,\;1mCi)$. To estimate the stability of purified THT, $^{125}I-iodotyraminehemisuccinyltaxol(^125}ITHT)$ was dissolved in 80% acetonitrile aqueous solution, and the solution was incubated at $4^{\circ}C\;and\;37^{\circ}C$ for 7 days. At various time intervals, the stability of THT and $^{125}ITHT$ was monitored. The titer of Taxol monoclonal antibody, 3G5A7, was determined by competitive radioimmunoassay using $^{125}ITHT$ as a labeled antigen. A standard dose-response curve was demonstated by Taxol competitive radioimmunoassay. Resulls : HT and THT were synthesized with 79.9% and 19.5% yield, respectively. The labeling yield of $^{125}ITHT$ was 93%. After 7 days, the chemical purity of THT was 96.5% at $4^{\circ}C$, and 97.5% at $37^{\circ}C$. After 3 days, $^{125}ITHT$ was stable with 94.7% at $4^{\circ}C$ and 93.4% at $37^{\circ}C$. After 7 days, fadiochemical purity was diminished to 88.1% at $37^{\circ}C$. The titer of Taxol monoclonal antibody, 3G5A7, was determined to 1:256. A standard dose-response curve demonstated good collinearity ($R^2=0.971$) as Taxol concentration-dependent manner. Conclusion : Competitive radioimmunoassay using $^{125}I-iodotyraminehemisuccinytaxol$ as radiotracer could be used to monitor for concentration of Taxol in the human serum.