• Title/Summary/Keyword: monitored

Search Result 5,844, Processing Time 0.038 seconds

Characteristics of airborne radon and thoron levels monitored in Seoul Subway stations and circulation lines (서울 일부 지하철 공기 중 라돈과 토론 발생 특성)

  • Kwak, Hyunseok;Kim, So-Yeon;Park, Jihoon;Choi, Sangjun;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Objective: This study aims to characterize airborne radon and thoron levels ($Bq/m^3$) generated from working environments in three subway stations in Seoul. Method: A radon and thoron detector (EQF3220) was used to monitor real-time airborne radon and thoron levels ($Bq/m^3$) and their daughters ($Bq/m^3$) every two hours. They were monitored not only in the driver's cabin of seven circulation lines, but also three offices, platforms, and water pump reservoirs in the three stations. Results: The average levels of radon and thoron were $67.9Bq/m^3$ (range; $7.2-619.4Bq/m^3$) and $44.4Bq/m^3$ (range; $4.3-819.2Bq/m^3$), respectively. Notably, higher than legal airborne radon levels ($600Bq/m^3$) were frequently monitored in the driver's cabin of seven circulation lines. Airborne radon levels monitored in the platforms and administrative offices were found to be over $100Bq/m^3$. The average equilibrium factors (F) were 0.12 and 0.06, respectively. The percentages detected were found to be 84.9 for radon and 72.4 for thoron, respectively. Conclusions: Significant airborne radon and thoron levels were frequently found to be generated in subway facilities including water reservoirs, platforms and driver's cabins. Further study is necessary to thoroughly investigate airborne radon and thoron in all subway stations and to devise proper measures.

Power Quality Warning of High-Speed Rail Based on Multi-Features Similarity

  • Bai, Jingjing;Gu, Wei;Yuan, Xiaodong;Li, Qun;Chen, Bing;Wang, Xuchong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.92-101
    • /
    • 2015
  • As one type of power quality (PQ) disturbance sources, high-speed rail (HSR) can have major impacts on the power supply grid. Providing timely and accurate warning information for PQ problems of HSR is important for the safe and stable operation of traction power supply systems and the power supply grid. This study proposes a novel warning approach to identify PQ problems and provide warning prompts based on the monitored data of HSR. To embody the displacement and status change of monitored data, multi-features of different sliding windows are computed. To reflect the relative importance degree of these features in the overall evaluation, an analytic hierarchy process (AHP) is used to analyse the weights of multi-features. Finally, a multi-features similarity algorithm is applied to analyse the difference between monitored data and the reference data of HSR, and PQ warning results based on dynamic thresholds can be analysed to quantify its severity. Cases studies demonstrate that the proposed approach is effective and feasible, and it has now been applied to an actual PQ monitoring platform.

Phenology of Zostera marina at Tongyeong in Southern Coast of Korea (통영 연안에 분포하는 거머리말의 계절변동과 생식특성)

  • Yoon, Joon-Sik;Kim, Nam-Gil
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.62-70
    • /
    • 2019
  • We investigated the variation of morphological features, density, biomass and characteristics of reproductive shoot on Zostera marina. This species was monthly monitored and collected during a year in Tongyeong (from January 2016 to December 2016). Morphological features, biomass and density showed significantly seasonal variation (p<0.001). Dimensions of Z. marina were highest in spring and early summer but lowest in winter. Biomass and leaf density of Z. marina showed highest value in May (4,700.5 g w·wt m-2) and June (858.0 leaves m-2) respectively and lowest value in November (515.9 g w·wt m-2 and 312.0 leaves m-2). Reproductive shoot was monitored from April (13℃) to June (21℃) and grew up to ca. 200 cm. Spathe length, spadix weight, numbers and weight of fruit showed significantly different on monthly. None mature flowers were monitored in April but matured flowers, fruits were founded in May and seed releasing were occurred in June.

Automatic Calibration for Noncontinuous Observed Data using HSPF-PEST (HSPF-PEST를 이용한 불연속 실측치 자동보정)

  • Jeon, Ji-Hong;Lee, Sae-Bom
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.111-119
    • /
    • 2012
  • Applicability of 8 day interval flow data for the calibration of hydrologic model was evaluated using Hydrological Simulation Program-Fortran (HSPF) at Kyungan watershed. The 8 day interval flow monitored by Ministry of Environment located at upstream was calibrated and periodically validated during 2004-2008. And continuous daily flow monitored by Ministry of Construction & Transportation (MOCT) and located at the mouth was compared with daily simulated data during 2004-2007 as spatial validation. Automatic calibration tool which is Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) was applied for HSPF calibration procedure. The model efficiencies for calibration and periodic validation were 0.63 and 0.88, and model performances were fair and very good, respectively, based on criteria of calibration tolerances. Continuous daily stream flow at the mouth of Kyungan watershed were good agreement with observed continuous daily stream flow with showing 0.63 NS value. The PEST program is very useful tool for HSPF hydrologic calibration using non-continuous daily stream flow as well as continuous daily stream flow. The 8 day interval flow data monitored by MOE could be used to calibrate hydrologic model if the continuous daily stream flow is unavailable.

Surgical Resuscitation of a Patient with Cerebral Herniation Secondary to Massive Hemorrhage in the Basal Ganglia: Ultrasound-monitored Aspiration

  • Jung, Youn-Ho;Park, Jae-Chan;Hamm, In-Suk
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.300-302
    • /
    • 2005
  • The authors report a case of hyperacute, massive hemorrhage in the left basal ganglia with severe midline shift that was treated successfully by the ultrasound-monitored free hand aspiration technique. Every effort was made to shorten time until removal of considerable amount of the hematoma and minimize duration of cerebral herniation, avoiding additional irreversible neurological deficit. A burr hole aspiration technique was preferred to standard craniotomy procedure, and any time-consuming procedures such as stereotactic frame application were abandoned. A burr hole was localized on the basis of computed tomography images simply and quickly with a ruler, and safety of the aspiration procedure was augmented by real-time ultrasound monitoring. Such minimally invasive technique relieved cerebral herniation successfully while avoiding time consumption and the morbidity of major craniotomy procedure. Early resuscitation of the patient with cerebral herniation in this case resulted in excellent recovery of the patient's neurological deficit. The patient's mentality started to improve rapidly and was clear six months after the surgery.

A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding (원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

Low Dose Propofol with Dexmedetomidine is Effective for Monitored Anesthesia Care in Outpatients Undergoing Invasive Oral Surgery

  • Lee, Do-Won;Yoon, Ji-Uk;Ok, Young-Min;Byeon, Gyeong-Jo;Kim, Cheul-Hong;Yoon, Ji-Young
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2013
  • Certain oral surgery can be performed safely under monitored anesthesia care (MAC) with local anesthesia. Several drugs, such as propofol, benzodiazepine, and opioids have been used for MAC either alone or in combination. Benzodiazepine may cause excessive sedation and confusion, and propofol can also result in disorientation and excessive sedation. Low dose propofol anesthesia with the concomitant use of dexmedetomidine is an effective technique for MAC in patients who are scheduled for intraoral surgery.

Real-time unsaturated slope reliability assessment considering variations in monitored matric suction

  • Choi, Jung Chan;Lee, Seung Rae;Kim, Yunki;Song, Young Hoon
    • Smart Structures and Systems
    • /
    • v.7 no.4
    • /
    • pp.263-274
    • /
    • 2011
  • A reliability-based slope stability assessment method considering fluctuations in the monitored matric suction was proposed for real-time identification of slope risk. The assessment model was based on the limit equilibrium model for infinite slope failure. The first-order reliability method (FORM) was adopted to calculate the probability of slope failure, and results of the model were compared with Monte-Carlo Simulation (MCS) results to validate the accuracy and efficiency of the model. The analysis shows that a model based on Advanced First-Order Reliability Method (AFORM) generates results that are in relatively good agreement with those of the MCS, using a relatively small number of function calls. The contribution of random variables to the slope reliability index was also examined using sensitivity analysis. The results of sensitivity analysis indicate that the effective cohesion c' is a significant variable at low values of mean matric suction, whereas matric suction ($u_a-u_w$) is the most influential factor at high mean suction values. Finally, the reliability indices of an unsaturated model soil slope, which was monitored by a wireless matric suction measurement system, were illustrated as 2D images using the suggested probabilistic model.

Comparison of Generated Loads by Hydroponics of Strawberry, Tomato, and Paprika in Gyeongsangnam-do (경남지역 딸기, 토마토, 파프리카 양액재배에 따른 발생부하량 비교)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.73-81
    • /
    • 2021
  • The objective of this study was to analyze the waste nutrient generation loads from hydroponics for three major crops in Gyeongsangnam-do. Study hydroponic farms were selected for the three major crops such as paprika, strawberry, tomato based on the agricultural statistics data and field investigation. The flow amount and water quality for inflow and outflow of study hydroponic farms were monitored and analyzed on a monthly basis. Monitored samples were analyzed in terms of DO, BOD, T-N, T-P, SS, and EC. The generated load of BOD, T-N, and T-P were calculated from the monitored flow and water quality. The monitoring results showed that the drainage ratio for the circular hydroponic farm was lower than the non-circular hydroponic farm because the outflow from the circular hydroponics were much lower than that from the non-circular. The generated load calculation results showed that the BOD tended to have a smaller value than the TMDLs guideline for land, while T-N and T-P showed higher value than that from the TMDLs guideline. In order to effectively manage the pollutant load discharged from the hydroponics farming complex, it is necessary to manage the non-circulating hydroponics farm. To improve water quality, it is necessary to gradually expand the circulating hydroponics farm through policy and economic support.

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou;Sha Bao;Lun-Hai Zhi;Feng Hu;Kang Xu;Zhen-Ru Shu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.451-460
    • /
    • 2023
  • Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.