• Title/Summary/Keyword: momentum flux

Search Result 180, Processing Time 0.03 seconds

Spray Plume Characteristics of Liquid Jets in Subsonic Crossflows (수직분사제트의 액적영역 분무특성에 대한 연구)

  • Song, Jin-Kwan;Ahn, Kyu-Bok;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • The effect of internal liquid flow on spray plume characteristics was performed experimentally in subsonic cross flows. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of the research are to investigate the effect of internal liquid flow on the spray plume characteristics and compare the trajectory of spray plume with previous works. The results suggest that the trajectory and width of spray plume can be correlated as a function of liquid/air momentum flux ratio(q), injector diameter and normalized distance from the injector exit(x/d). It's also found that the injector internal turbulence influences the spray plume characteristics significantly.

  • PDF

On the Controlled-spin Intensity Method For the Tangentially-fired Furnaces

  • Shifa Ding;Jianghong Kuang;Pingyuan Liu;Chaosong Chen;Xingsheng Hu;Handing Cao;Jinyuan Xu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.213-216
    • /
    • 2003
  • This paper put forward the controlled spin intensity method for the tangentially-fired furnaces to solve the problems existed in the counter-tangential operation. The numerical simulation was used in this paper to discuss some basic principles.

  • PDF

NUMERICAL ANALYSIS OF FLOW AND COOLING CHARACTERISTICS OF SLIT JETS IMPINGEMENT (슬릿젯의 유동 및 냉각 성능에 대한 수치적 연구)

  • Son, S.;Son, G.;Lee, P.;See, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.448-450
    • /
    • 2010
  • Free surface liquid jet impingement, which is applicable to cooling of hot plates in a steel-making process, is investigated numerically by solving the conservation equations of mass, momentum and energy in the liquid and gas phases. The free-surface of liquid-gas interface is tracked by an improved level-set method incorporating a sharp-interface technique for accurate imposition of stress and heat flux conditions on the liquid-gas interface. The level-set approach is combined with a non-equilibrium $k-{\omega}$ turbulence model. The computations are made for slit nozzle jets to investigate their flow and cooling characteristics. Also, the effects of jetting angle, velocity and moving velocity of plate on the interfacial motion and the associated flow and temperature fields are quantified.

  • PDF

Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Perez-Aparicio, Jose L.
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.5-25
    • /
    • 2018
  • A fully-coupled thermodynamic-based transient finite element formulation is proposed in this article for electric, magnetic, thermal and mechanic fields interactions limited to the linear case. The governing equations are obtained from conservation principles for both electric and magnetic flux, momentum and energy. A full-interaction among different fields is defined through Helmholtz free-energy potential, which provides that the constitutive equations for corresponding dual variables can be derived consistently. Although the behavior of the material is linear, the coupled interactions with the other fields are not considered limited to the linear case. The implementation is carried out in a research version of the research computer code FEAP by using 8-node isoparametric 3D solid elements. A range of numerical examples are run with the proposed element, from the relatively simple cases of piezoelectric, piezomagnetic, thermoelastic to more complicated combined coupled cases such as piezo-pyro-electric, or piezo-electro-magnetic. In this paper, some of those interactions are illustrated and discussed for a simple geometry.

Analysis of LiBr-H$_{2}$O Film Absorption on a Horizontal Tube (수평원관상의 LiBr-H$_{2}$O 액막흡수현상 해석)

  • Park, Il-Seok;Choe, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.670-679
    • /
    • 1996
  • A numerical study for vapor absorption into LiBr-H$_{2}$O solution film flowing over horizontal circular tubes has been carried out. The momentum, energy and diffusion equations, which are parabolized by the boundary- layer approximation, are solved simultaneously for various mass-flow rates and inlet conditions. The results for the velocity, temperature and concentration fields, as well as the heat and mass flux at the free surface are presented. The effects of inlet conditions, i.e., flow rate, temperature and concentration, on the absorption process are also examined and discussed.

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface. (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.139-144
    • /
    • 2003
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the melt pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.

  • PDF

Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System (분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션)

  • Wang, W.K.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

Determination of temperature and flux variations during ultra-thin InGaN quantum well growth on a 2" wafer for GaN Green LED

  • Kim, Hyo-Jeong;Kim, Min-Ho;Jeong, Hun-Yeong;Lee, Hyeon-Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.149-149
    • /
    • 2010
  • The origin of the inhomogeneous distribution of photoluminescence (PL) peak wavelength on a commercial 2" GaN wafer for green light emitting diode has been investigated by wide momentum transfer (Q) range x-ray diffraction (XRD) profile of InGaN/GaN multiple quantum wells. Near the GaN (0004) Bragg peak, wide-Q range XRD (${\Delta}Q$ > $1.4{\AA}-1$) was measured along the growth direction. Wide-Q XRD gives precise and direct information of ultra-thin InGaN quantum well structure. Based on the QW structural information, the variation of PL spectra can be explained by the combined effect of temperature gradient and slightly uneven flow of atomic sources during the QW growth. In narrow variations of indium composition and thickness of QW, an effective indium composition can be a good character to match structural data to PL spectra.

  • PDF

Forced Convection Heat Transfer in a Plate Fin With Transient Heat Conduction (과도열전도를 갖는 평판핀에서의 강제대류 열전달)

  • 조진호;이상균
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.69-76
    • /
    • 1987
  • A conjugate conduction-convection analysis has been made for a plate fin which exchanges heat with its fluid environment by forced convection. The analysis is based on a one- dimensional model for the plate fin whereby the transient heat conduction equation for the fin is solved simultaneously with the conservation equations for mass, momentum, and energy in the fluid boundary layer adjacent to the fin. The forced convection heat transfer coefficient is not specified in advance but is one the results of the numerical solutions. Numerical results of the overall heat transfer rate, the local heat transfer coefficient, the local heat flux, the fin efficiency and the fin surface temperature distribution for Pr=0.7 are presented for a wide range of operating conditions.

  • PDF

An Analysis of Heat and Fluid Flow in the Laser Surface Melting with a Deformed Surface (굴곡의 표면을 가진 금속의 레이저 용융에 대한 열 및 유체유동 해석)

  • Kim, Young-Deuk;Sim, Bok-Cheol;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.1-8
    • /
    • 2005
  • Laser melting problems with deformed substrates are investigated by axisymmetric numerical simulations. Source-based method is used to solve the energy equation, and the momentum equations are solved in the liquid domain with SIMPLER algorithm. Using a laser beam with a top-hat heat flux distribution, this study is performed to examine the effect of surface deformation, beam power density and surface tension force on the molten pool during laser melting. Surface temperature decreases with increasing surface deformation, while surface velocity increases. It is found that surface deformation, beam power density and surface tension force have a very significant effect on heat transfer and fluid flow during laser melting.