• Title/Summary/Keyword: momentum

Search Result 2,331, Processing Time 0.026 seconds

An Analysis of the Momentum Effect by Students' Characteristics and the Modes of Representation Patterns

  • Kim, Jun-Tae;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.5
    • /
    • pp.841-854
    • /
    • 2001
  • The purpose of this study was to find the effect of these variables on the duration of the momentum effect. To examine the momentum effect for gravitational field concepts, an intensive time series design was used. We collected data every day except Sundays and holidays for 50 days; 5 days for baseline, 30 days for intervention, and 15 days for the follow up We adopted cognitive levels and styles as students characteristics and two item characteristics(quantity versus quality, and word versus picture) as the item representation patterns. In this study, the momentum effect was influenced by students characteristics and item representation patterns. The results showed that two variables, cognitive style and quantity/quality, were the most influential factors for the duration of momentum effect. Field independent students showed a longer duration than field dependent students did. In addition, students showed a longer duration in quality items than in quantity items. However, students cognitive levels(formal or preformal) and word/picture presentations seemed to have relatively weak effect on the duration of the momentum effect.

  • PDF

A Study on the Wheel Momentum Management Logic of a Geosynchronous Satellite (정지궤도위성의 휠모멘텀 관리 로직 연구)

  • Park, Yeong Ung;Nam, Mun Gyeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.85-94
    • /
    • 2003
  • A geosynchronous Satellite in general, has two momentum management logics to maintain its wheel momentum tin the stable region. The one is applied in order to control accumulative wheel momentum in the momentum dumping mode and the other is utilized in order to control attitude errors during the stationkeeping. In this paper, the momentum management logics are explained for dumping/sationkeeping mode and the logics are verified by simulation on the 3 attitude subsystem.

Fuel Budget Analysis of the COMS Momentum Dumping (통신해양기상위성 (COMS)의 모멘텀 덤핑 사용 연료량 분석)

  • Park, Bong-Kyu;Yang, Koon-Ho;Park, Young-Woong;Choi, Jae-Dong;Lee, Sang-Cherl
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.81-88
    • /
    • 2005
  • This paper analyzes the fuel consumption for the momentum dumping of the COMS which has a single solar array system. First, numerical analyses are conducted to find an optimal momentum dumping time considering the COMS configuration. It is assumed that the momentum dumping is conducted once a day and at a fixed time of a day. Secondly, in an effort to reduce the momentum dumping fuel consumption, this paper proposes a new approach which combines the momentum dumping and the ordinary north/south stationkeeping. Finally, to evaluate the proposed technique, the stationkeeping simulations are conducted and analyzed.

The Relationship between the Angular Momentum of the Limbs and the Performance during Support Phase of the Triple Jump (세단뛰기 지지국면 시 사지의 각운동량과 운동수행과의 관계)

  • Ryu, Jae-Kyun;Yeo, Hong-Chul
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.1
    • /
    • pp.65-81
    • /
    • 2004
  • The purposes of this study were to determine the functions of actions of the limbs during each of the three support phases of the triple jump and their relationships with the performance of the triple jump. Four elite male triple jumpers were participated as subjects. The Pearson product moment correlation coefficient were used to determine and compare the relationships between the change in each component of the normalized angular momentum of the whole body about center of gravity and the actions of the extremities during different support phases. A level of significance at $\alpha$=.05 was set. After analyzing the angular momentum and correlation during support phase of the hop, step, and jump, the following findings are obtained: The actions of the arms created a side-somersaulting angular momentum about the whole body center of gravity toward the side of the free leg during the support phase of the step, and a somersaulting angular momentum about the whole body center of gravity during each support phase. The action of the free leg created a somersaulting angular momentum about the whole body center of gravity during the support phases of the hop and step.

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

Dynamic Parameters Identification of Robotic Manipulator using Momentum (모멘텀을 이용한 로봇 동역학 파라미터 식별)

  • Choi, Young-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.222-230
    • /
    • 2012
  • The paper presents a momentum-based regressor by using Hamiltonian dynamics representation for robotic manipulator. It has an advantage in that the proposed regressor does not require the acceleration measurement for the identification of dynamic parameters. Also, the identification algorithm is newly suggested by solving a minimization problem with constraint. The developed algorithm is easy to implement in real-time. Finally, the effectiveness of the proposed momentum-based regressor and identification method is shown through numerical simulations.

Analysis of the angular momentum on the lower extremity by change of starting block angles (스타트 블록의 각도에 따른 하지의 각운동량 분석)

  • Shin, Sung-Hu;Kim, Tae-Wan;Kwon, Moon-Seok;Go, Suk-Gon;Park, Ki-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.165-175
    • /
    • 2004
  • The aim of this study is to show the effect of starting block angle on the starting motion of sprinters using a crouching start. After installing starting blocks on forced platform, and having four highly comparative sprinters use the starting blocks, I analyzed the angular momentum of a crouching start. From the results of the analysis, the following conclusions could be drawn: There were differences of angular momentum both in body's X, Y, and Z axes and in the thighs' X axes, but not in the pelvis and lower legs. As to the general change of block angle, we noticed that an angular momentum for each segments was higher at an angle of 50 to 55 degrees.

Automatic Seismic P-wave Detection Algorithm Using Variations of Impact Momentum (충격 추진력 변화를 이용한 지진 P파 자동 검출 알고리즘)

  • Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.884-891
    • /
    • 2018
  • In this paper, we propose an automatic earthquake P-wave detection algorithm based on the variations of the impact momentum derived from the seismic acceleration signals. The amount of change in the impact momentum induced by the acceleration refers to the influence of buildings or facilities on the earthquake, The proposed algorithm can effectively detect the seismic P-wave by simultaneously considering the amplitude and the frequency change of the seismic wave when the earthquake occurs. Computer simulations using the observed seismic signals were performed to evaluate the validity of the induced impact momentum variation and the superiority of the proposed algorithm.

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Nonlinear Nutation Control of Spacecraft Using Two Momentum Wheels

  • Seo, In Ho;Kim, Jong Myeong;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2017
  • In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.