• 제목/요약/키워드: moment-independent

검색결과 176건 처리시간 0.025초

CAUTION OF REGIONAL FLOOD FREQUENCY ANALYSIS BASED ON WEIBULL MODEL

  • Heo, Jun-Haeng;Lee, Dong-Jin;Kim, Kyung-Duk
    • Water Engineering Research
    • /
    • 제1권1호
    • /
    • pp.11-23
    • /
    • 2000
  • Regional flood frequency analysis has been developed by employing the nearby site's information to improve a precision in estimating flood quantiles at the site of interest. In this paper, single site and regional flood frequency analyses were compared based of the 2-parameter Weibull model. For regional analysis, two approaches were employed. The First one is to use the asymptotic variances of the quantile estimators derived based of the assumption that all sites including the site of interest are independent each other. This approach may give the maximum regional gain due to the spatial independence assumption among sites. The second one in Hosking's regional L-moment algorithm. These methods were applied to annual flood data. As the results, both methods generally showed the regional gain at the site of interest depending on grouping the sites as homogeneous. And asymptotic formula generally shows smaller variance than those from Hosking's algorithm. If the shape parameter of the site of interest from single site analysis is quite different from that from regional analysis then Hosking's results might be better than the asymptotic ones because the formula was derived based on the assumption that all sites have the same regional shape parameter. Furthermore, in such a case, regional analysis might be worse than single site analysis in the sense of precision of flood quantile estimation. Even though the selected sites may satisfy Hosking's criteria, regional analysis may not give a regional gain for specific and nonexceedance probabilities.

  • PDF

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Parametric study of laterally loaded pile groups using simplified F.E. models

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2012
  • The problem of laterally loaded piles is particularly a complex soil-structure interaction problem. The flexural stresses developed due to the combined action of axial load and bending moment must be evaluated in a realistic and rational manner for safe and economical design of pile foundation. The paper reports the finite element analysis of pile groups. For this purpose simplified models along the lines similar to that suggested by Desai et al. (1981) are used for idealizing various elements of the foundation system. The pile is idealized one dimensional beam element, pile cap as two dimensional plate element and the soil as independent closely spaced linearly elastic springs. The analysis takes into consideration the effect of interaction between pile cap and soil underlying it. The pile group is considered to have been embedded in cohesive soil. The parametric study is carried out to examine the effect of pile spacing, pile diameter, number of piles and arrangement of pile on the responses of pile group. The responses considered include the displacement at top of pile group and bending moment in piles. The results obtained using the simplified approach of the F.E. analysis are further compared with the results of the complete 3-D F.E. analysis published earlier and fair agreement is observed in the either result.

Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates

  • Song, Yuchen;Uy, Brian;Wang, Jia
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.143-162
    • /
    • 2019
  • A number of desirable characteristics concerning excellent durability, aesthetics, recyclability, high ductility and fire resistance have made stainless steel a preferred option in engineering practice. However, the relatively high initial cost has greatly restricted the application of stainless steel as a major structural material in general construction. This drawback can be partially overcome by introducing composite stainless steel-concrete structures, which provides a cost-efficient and sustainable solution for future stainless steel construction. This paper presents a preliminary numerical study on stainless steel-concrete composite beam-to-column joints with bolted flush endplates. In order to ensure a consistent corrosion resistance within the whole structural system, all structural steel components were designed with austenitic stainless steel, including beams, columns, endplates, bolts, reinforcing bars and shear connectors. A finite element model was developed using ABAQUS software for composite beam-to-column joints under monotonic and symmetric hogging moments, while validation was performed based on independent test results. A parametric study was subsequently conducted to investigate the effects of several critical factors on the behaviour of composite stainless steel joints. Finally, comparisons were made between the numerical results and the predictions by current design codes regarding the plastic moment capacity and the rotational stiffness of the joints. It was concluded that the present codes of practice generally overestimate the rotational stiffness and underestimate the plastic moment resistance of stainless steel-concrete composite joints.

양발 드롭랜딩 시 만성적인 발목 불안정성 유무에 따른 하지주요관절의 역학적 특성 (Biomechanical Characteristic on Lower Extremity with or without Chronic Ankle Instability during Double Leg Drop Landing)

  • Jeon, Kyoungkyu;Park, Jinhee
    • 한국운동역학회지
    • /
    • 제31권2호
    • /
    • pp.113-118
    • /
    • 2021
  • Objective: The purpose of this study was to investigate differences of landing strategy between people with or without chronic ankle instability (CAI) during double-leg drop landing. Method: 34 male adults participated in this study (CAI = 16, Normal = 18). Participants performed double-leg drop landing task on a 30 cm height and 20 cm horizontal distance away from the force plate. Lower Extremities Kinetic and Kinematic data were obtained using 8 motion capture cameras and 2 force plates and loading rate was calculated. Independent samples t-test were used to identify differences between groups. Results: Compared with normal group, CAI group exhibits significantly less hip internal rotation angle (CAI = 1.52±8.12, Normal = 10.63±8.44, p = 0.003), greater knee valgus angle (CAI = -6.78±5.03, Normal = -12.38 ±6.78, p = 0.011), greater ankle eversion moment (CAI = 0.0001±0.02, Normal = -0.03±0.05, p = 0.043), greater loading Rate (CAI = 32.65±15.52, Normal = 18.43±10.87, p = 0.003) on their affected limb during maximum vertical Ground Reaction Force moment. Conclusion: Our results demonstrated that CAI group exhibits compensatory movement to avoid ankle inversion during double-leg drop landing compared with normal group. Further study about how changed kinetic and kinematic affect shock absorption ability and injury risk in participants with CAI is needed.

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • 제13권3호
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

독립성분분석을 이용한 국부기저영상 기반 동작인식 (Motion Recognitions Based on Local Basis Images Using Independent Component Analysis)

  • 조용현
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.617-623
    • /
    • 2008
  • 본 논문에서는 중심이동과 국부기저영상을 이용한 동작인식 기법을 제안하였다. 여기서 중심이동은 1차 모멘트 평형에 기반을 둔 것으로 위치나 크기 변화에 강건한 동작영상을 얻기 위함이고, 국부기저영상의 추출은 독립성분분석 기법에 기반을 둔 것으로 각 동작들마다에 포함된 통계적으로 독립인 동작특징들의 집합을 얻기 위함이다. 특히 국부기저영상을 빠르게 추출하기 위해 뉴우턴(Newton)법의 고정점 알고리즘에 기반을 둔 독립성분분석을 이용하였다. 제안된 기법을 240*215 픽셀의 160(1명*10종류*16동작)개 동물표현의 수화 동작영상을 대상으로 city-block, Euclidean, 그리고 negative angle의 척도들을 분류척도로 이용하여 실험하였다. 실험결과, 제안된 기법은 국부고유영상을 이용한 방법과 중심이동을 거치지 않는 국부기저영상을 이용하는 기법보다 각각 우수한 인식성능이 있음을 확인하였다.

무릎관절 골관절염 환자의 보행기 보행에서 생역학적 특성 (Biomechanical Properties of the Anterior Walker Dependent Gait of Patients with Knee Osteoarthritis)

  • 이인희;권기홍;박상영
    • The Journal of Korean Physical Therapy
    • /
    • 제25권5호
    • /
    • pp.239-245
    • /
    • 2013
  • Purpose: Osteoarthritis occurs in many different joints of the body, causing pain, stiffness, and decreased function. The knee is the most frequently affected joint of the lower limb. The aim of this study was to investigate the differences of biomechanics between independent gait and anterior walker dependent gait of patients with osteoarthritis of the knee. Methods: Lower limb joint kinematics and kinetics were evaluated in 15 patients with knee osteoarthritis when walking independently and when walking with an anterior walker. Participants were evaluated in a gait laboratory, with self-selected gait speed and natural arm swing. Results: When walking with a dependent anterior walker, participants walked significantly faster (p<0.01), using a longer stride length (p<0.01), compared to independent gait. When walking with a dependent anterior walker, participants exhibited significantly greater knee flexion/extension motion (p<0.01) and lower knee flexion moment (p<0.05) compared to independent gait. When walking with a dependent anterior walker, participants showed significantly greater peak ankle motion (p<0.01), ankle dorsiflexion/plantarflexion moments (p<0.01), and ankle power generation (p<0.05) compared to independent gait. Conclusion: These biomechanical properties of gait, observed when participants walked with a dependent anterior walker, may be a compensatory response to impaired knee function to allow sufficient power generation for propulsion. Therefore, rehabilitative strategies for patients with osteoarthritis of the knee are needed in order to improve not only knee function but also hip and ankle function.

보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석 (Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint)

  • 강석봉;김태용
    • 콘크리트학회논문집
    • /
    • 제24권5호
    • /
    • pp.517-524
    • /
    • 2012
  • 이 논문에서는 푸쉬오버해석을 통해 보-기둥 접합부 비탄성 전단거동과 고차모드를 고려한 횡하중 수직분포 형태가 구조물 거동에 미치는 영향을 알아보기 위해 지반조건 $S_B$ 내진설계범주 C에 대해서 5층 철근콘크리트 보통모멘트골조를 KBC2009에 맞게 구조설계 하였다. 보 및 기둥 부재의 휨모멘트-곡률 관계는 섬유모델(fiber model)로 확인하였으며 보-기둥 접합부 모멘트-회전각 관계는 simple and unified joint shear behavior model과 보-기둥 접합부 모멘트 평형관계를 이용하여 확인하였다. 푸쉬오버해석 결과 보-기둥 접합부를 강체로 고려하는 경우 구조물의 강성도 및 강도가 과대평가 되었으나 반응수정계수는 접합부 비탄성거동과 관계없이 KBC2009 보통모멘트골조 계수를 만족하여 구조 설계 과정에서 보-기둥 접합부의 비탄성 전단거동을 고려하지 않아도 문제가 없을 것으로 판단된다.

철근콘크리트 보의 균열 폭과 처짐 관계 (Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams)

  • 강주오;김강수;이득행;이승배
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.184-192
    • /
    • 2010
  • 철근콘크리트 구조물의 사용성을 검토할 때 처짐은 가장 중요한 사항 중 하나이며, 철근콘크리트 휨 부재의 처짐은 일반적으로 유효 단면2차모멘트의 개념을 적용하여 구해진다. 그러나 이미 사용중인 철근콘크리트 보에서 정확한 사용하중을 알기 어려운 경우에는 기존의 방법으로 처짐을 계산하는 것이 쉽지 않다. 따라서, 이 연구에서는 철근콘크리트 보에서 균열과 처짐은 상호 밀접한 관련이 있다는 사실을 바탕으로 작용하는 하중의 크기에 무관하게 철근 콘크리트 보 부재의 균열 상태로부터 처짐을 쉽게 산정할 수 있는 방법을 제안하고자 하였다. 균열폭의 합, 평균변형률 및 곡률 등의 관계를 이용하여 처짐식을 제안하였으며, 수정계수를 적용하여 보다 정확한 처짐식을 제안하고자 하였다. 이 제안식을 사용할 경우, 철근콘크리트 보에 작용하는 하중 크기에 무관하게 균열을 측정함으로써 처짐 추정치를 얻을 수 있으며, 유효 단면 2차 모멘트 값을 산출하여 처짐을 산정하는 기존의 방법에 비해 비교적 간단하게 처짐을 산출 할 수 있다.