• Title/Summary/Keyword: moment-curvature behavior

Search Result 115, Processing Time 0.021 seconds

Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings (반복하중을 받는 철근콘크리트 기둥의 비선형 거동)

  • 곽효경;김선필
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Moment-Curvature behavior of steel and GFRP reinforced beam using AE and DIC Techniques

  • Sharma, Gaurav;Sharma, Shruti;Sharma, Sandeep K.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.253-268
    • /
    • 2022
  • Using non-destructive Acoustic Emission (AE) and optical Digital Image Correlation (DIC) methods, the moment-curvature behavior of steel and GFRP bars reinforced concrete beams under flexure was explored in this study. In the tension zone, laboratory studies were carried out on steel-RC and GFRP-RC beams with varying percentages of longitudinal reinforcement ratios of 0.33 %, 0.52%, and 1.11%. The distinct mechanism of cracking initiation and fracture progression of failure in steel-RC and GFRP-RC beams were effectively correlated and picked up using AE waveform characteristics of the number of AE hits and their amplitudes, AE energy as well as average frequency and duration. AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams. They display a close matching with the micro and macro-cracks visually observed in the actual beams at various stages of loading.

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

Evaluation on Moment-Curvature Relations and Curvature Ductility Factor of Reinforced Concrete Beams with High Strength Materials (고강도 재료를 사용한 철근콘크리트 보의 모멘트-곡률관계 및 곡률연성지수 평가)

  • Lee, Hyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.283-294
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures, specially, the reinforcing steel is permitted to used in RC structures up to yielding strength of 600 MPa. The strength of materials in RC beam section effects on the behavior and ductility of the RC members. In this study, the numerical analysis has been conducted to obtain the complete moment-curvature relation and the curvature ductility factor for the rectangular RC beams sections under the various reinforcement conditions and the effects of concrete strength, yield strength of reinforcement steel on the behavior and the curvature ductility factor of RC beam sections have been evaluated. The compressive strength of concrete and yield strength of steel have effected in various manner on the behavior and the curvature ductility factor of RC beam sections under reinforcement conditions. In the case of beam sections with equal resisting moment. the curvature ductility factor of RC beam section decreased with an increase in the yield strength of steel and increased with an increase in the concrete strength. When the yield strength of steel increased from 400 MPa to 600 MPa, the curvature ductility factor reduced about 30% and as the concrete strength increased from 30 MPa to 70 MPa, the curvature ductility factor of RC beam section increased about 3 times.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Behavior of concrete-filled round-ended steel tubes under bending

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.457-472
    • /
    • 2017
  • The objective of this paper is to investigate the flexural behavior of concrete-filled round-ended steel tubes (CFRTs) under bending. Beam specimens were tested to investigate the mechanical behavior of the CFRTs, including four CFTs with different concrete strengths and steel ratios, and three CFRTs with varied aspect ratios. The load vs. deflection relationships and the failure modes for CFRTs were analyzed in detail. The composite action between the core concrete and steel tube was also discussed and examined based on the experimental results. In addition, ABAQUS program was used to develop the full-scale finite element model and analyze the effect of different parameters on the moment vs. curvature curves of the CFRTs bending about the major and minor axis, respectively. Furthermore, design formulas were proposed to estimate the ultimate moment and the flexural stiffness of the CFRTs, and the simplified theoretical model of the moment vs. curvature curves was also developed. The predicted results showed satisfactory agreement with the experimental and FE results. Finally, the differences of the experimental, FE and predicted results using the existing codes were illustrated.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

Modeling and Parametric Studies on Moment-Curvature Relations for Reinforced Concrete Columns (철근콘크리트 기둥의 휨-곡률 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.285-290
    • /
    • 2000
  • A mathematical model which can simulate biaxial moment-curvature relations for reinforced concrete column is developed. The developed model is capable of tracing the post-peak behavior of a column after peak load. The model can take into account different sectional shapes of a column and various constitutive models of confined concrete. The developed model is used to evaluate constitutive models of confined concrete under concentric loading, suggested by different researchers. Error function which measures the overall constitutive behavior of a confined concrete is intrcduced. The constitutive model minimizing this error function is selected and is incorporated into the developed model in order to investigate the effect of main parameters on the general column behavior.

  • PDF

An Analytical Study on the Structural Behavior of Composite Beams (합성보의 거동에 관한 해석적 연구)

  • 황영서;양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.175-182
    • /
    • 1998
  • An analytical study to trace the nonlinear structural behavior of composite beams is undertaken to include the nonlinear material properties of steel sheeting, reinforcing steel bar and concrete. To trace Moment-curvature relations, sectioning analysis method and two simple formulas are developed. A simple power model which has been originally used to expect the flexural capacity of the beam to column connections is proposed and the second formula is composed of two experimental functions to express the Moment-curvature relation in the elastic and plastic range separately. The load-deflection behavior of the beams has been simulated by the step-by-step numerical integration method and is compared with the test results available.

  • PDF

Bond mechanism effect on the flexural behavior of steel reinforced concrete composite members

  • Juang, Jia-Ling;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.387-400
    • /
    • 2006
  • This paper discusses the composite mechanism and its effect upon the behavior of a steel reinforced concrete (SRC) member subjected to a flexural load. The relationship between member strength and deformation is established using the bond strength between the steel and reinforced concrete. An analytical model is proposed and used to incorporate the sectional strains and bond strength at the elastic and inelastic stages for moment-curvature relationship derivation. The results from the flexural load tests are used to validate the accuracy of the proposed model. Comparisons between the experimental information and the analytical results demonstrate close moment-curvature relevance, which justifies the applicability of the proposed method.