• Title/Summary/Keyword: moment resisting capacity

Search Result 177, Processing Time 0.037 seconds

Welding and Moment Resisting Performance of R/C Column-Steel Girder Connection (철근콘크리트 기둥-철골 보 접합부의 용접성능 및 휨 저항성능)

  • 전재범;최광호;이세웅;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.553-558
    • /
    • 1999
  • As a process of development of composite beam-column connection system, structural tests have been conducted to verify moment resisting performance of the system. The tests have been proceeded by two steps, the first being welding performance test of the steel connection rod and stiffners, and the second overall moment resisting capacity of the fuly assembled system. Ten welding test specimens and four prototype specimens have been used in the test. Good structural performance of welding test specimens has been observed without any single welding failure, and sufficient moment resisting capacity has been proved from the overall performance test, with the moment magnitude in excess of the calculated plastic moment.

  • PDF

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Nonlinear Dynamic Capacity of Reinforced Concrete Special Moment Frame Buildings (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 성능값)

  • Kim, Tae-Wan;Kim, Tae-Jin
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.209-216
    • /
    • 2006
  • For evaluation of building performance, a nonlinear dynamic capacity of the building is a key parameter. In this study, an reinforced concrete special moment resisting frame building was chosen to study the process of determining the nonlinear dynamic capacity. The building, which was designed by IBC 2003 representing new codes, was composed of special moment resisting frames in the perimeter and internal frames inside the building. The capacity, which is inter-story drift capacity, consists of two categories, local and global collapses. Global collapse capacity was determined by incremental dynamic analysis. Local collapse capacity was determined by the same method except for utilizing damage index. In audition to this, it was also investigated that the effect of including internal frames designed by gravity load in the analysis. Results showed that the damage index is a useful tool for determining local collapse. Furthermore, including the internal frames with special frames in the analysis is very important in determining the capacity of a building so both must be considered at the same time.

  • PDF

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab

  • Turker, Kaan;Gungor, Ilhan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • In this study, seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab were evaluated numerically. Moment resisting systems consisting of moment and dual frame were selected as structural system of the buildings. Sufficiency of moment resisting wide-beam frames designed with high ductility requirements were evaluated. Upon necessity frames were stiffen with shear-walls. The buildings were designed in accordance with the Turkish Earthquake Code (TEC 2007) and were evaluated by using the strain-based nonlinear static method specified in TEC. Second order (P-delta) effects on the lateral load capacity of the buildings were also assessed in the study. The results indicated that the predicted seismic performances were achieved for the low-rise (4-story) building with the high ductility requirements. However, the moment resisting frame with high ductility was not adequate for the medium-rise building. Addition of sufficient amount of shear-walls to the system proved to be efficient way of providing the target performance of structure.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Experimental and numerical investigation on RC moment-Resisting frames retrofitted with NSD yielding dampers

  • Esfandiari, J.;Zangeneh, E.;Esfandiari, S.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • Retrofitting in reinforced concrete structures has been one of the most important research topics in recent years. There are several methods for retrofitting RC moment-resisting frames. the most important of which is the use of steel bracing systems with yielding dampers. With a proper design of yielding dampers, the stiffness of RC frame systems can be increased to the required extent so that the ductility of the structure is not significantly reduced. In the present study, two experimental samples of a one-third scale RC moment-resisting frame were loaded in the laboratory. In these experiments, the retrofitting effect of RC frames was investigated using Non-uniform Slit Dampers (NSDs). Based on the experimental results of the samples, seismic parameters, i.e., stiffness, ductility, ultimate strength, strength reduction coefficient, and energy dissipation capacity, were compared. The results demonstrated that the retrofitted frame had very significant growth in terms of stiffness, ultimate strength, and energy dissipation capacity. Although the strength reduction factor and ductility decreased in the retrofitted sample. In general, the behavior of the frame with NSDs was evaluated better than the bare frame.

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

A Study on the Energy Dissipation Capacity of Precast Concrete Beam-Column Connection using DDC (DDC를 활용한 건식 보-기둥 모멘트 접합부의 내진 성능에 관한 연구)

  • Hong, Sung-Gul;Lee, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.85-88
    • /
    • 2004
  • In this study, a simple moment-resisting precast concrete beam-column connection is proposed for highly seismic zone using dywidag ductile rod [DDC]. DDC is superior system for ductility, energy dissipation capacity, connection strength, and drift capacity. A study was carried out to investigate the connection behavior subjected to cyclic inelastic loading. Four Precast beam-column interior connections and one monolithic connection will be tested. The variables will be examined were the strength relationship between joint's ductile rod and beam reinforcement for gain energy dissipation capacity. The specimens will be tested only reverse cyclic loading in accordance with a prescribed displacement history. Connection performance is evaluated on the basis of ductility, energy dissipation capacity, connection strength, and drift capacity. the precast connection using DDC is capable of matching of exceeding the performance of the monolithic connection and thereby provides moment-resisting behavior.

  • PDF

Cyclic testing of steel column-tree moment connections with various beam splice lengths

  • Lee, Kangmin;Li, Rui;Chen, Liuyi;Oh, Keunyeong;Kim, Kang-Seok
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.221-231
    • /
    • 2014
  • The purpose of this study was to evaluate the cyclic behavior of steel column-tree moment connections used in steel moment resisting frames. These connections are composed of shop-welded stub beam-to-column connection and field bolted beam-to-beam splice. In this study, the effects of beam splice length on the seismic performance of column-tree connections were experimentally investigated. The change of the beam splice location alters the bending moment and shear force at the splice, and this may affect the seismic performance of column-tree connections. Three full-scale test specimens of column-tree connections with the splice lengths of 900 mm, 1,100 mm, and 1,300 mm were fabricated and tested. The splice lengths were roughly 1/6, 1/7, 1/8 of the beam span length of 7,500 mm, respectively. The test results showed that all the specimens successfully developed ductile behavior without brittle fracture until 5% radians story drift angle. The maximum moment resisting capacity of the specimens showed little differences. The specimen with the splice length of 1,300 mm showed better bolt slip resistance than the other specimens due to the smallest bending moment at the beam splice.